
EXPERIENCES FROM A HOME SENSOR
NETWORK DEPLOYMENT FOR ASSISTED
LIVING

Thiago Teixeira
Electrical Engineering Department
Yale Univerisity
New Haven, CT 06520, USA
thiago.teixeira@yale.edu

Dimitrios Lymberopoulos
Electrical Engineering Department
Yale Univerisity
New Haven, CT 06520, USA
dimitrios.lymberopoulos@yale.edu

Andreas Savvides
Electrical Engineering Department
Yale Univerisity
New Haven, CT 06520, USA
andreas.savvides@yale.edu

Abstract We report on a home wireless sensor network deployment that utilizes
cameras to collect activity information. This paper describes the design
choices and the general experience of maintaining such a data-heavy
network. The system includes camera nodes, a classifier program to
distill the packets into appropriate database tables, and a client-side
user interface for diagnosing and interacting with the network.

1. Introduction
The accessibility of sensor platforms makes their experimental deploy-

ments an attractive approach for better understanding application re-
quirements and challenges for sensor network research. Over the last few
months, our research has pursued one such deployment inside a house,



2

for an assisted living application. In this application our main objective
is to devise lightweight sensor networks that can understand people’s
activities to a level at which they can autonomously provide meaningful
services. For practical and cost purposes, our network is expected to
have a small number of nodes, but should be able to operate reliably for
several months collecting real data for validating our research hypothesis
about behavior interpretation.

Our initial deployment consists of 6 sensor nodes, 5 carrying image
sensors and 1 acting as a gateway to the base PC. The sensor nodes
were attached to the ceiling of the house in the configuration shown in
Figure 1. Each node carries a camera module with a wide-angle (162-
degree) lens facing perpendicularly down into the room. The nodes
compute the locations of people in the house using an image-processing
algorithm to detect the centroid of each moving blob. The time-stamped
centroids are then forwarded to a base station where they are stored and
later on processed for behavior interpretation.

Instead of describing the details of our behavior interpretation work,
in this paper we outline the challenges and experiences we have encoun-
tered during the first two months of deployment. The paper is divided
in three main parts: The first part of the paper introduces our testbed
setup and our requirements. The second part of the paper provides a
detailed account of the challenges we faced during the actual deploy-
ment. The third part describes our solutions to some of the issues we
faced together with a list of conventions and recommendations we have
established to keep our testbed running in a long-term deployment.

2. Deployment challenges
The prototype network reported in this paper was built with the goal

of continuously monitoring the activities that happen inside a home.
Moreover, the system should lend to quick deployment, it should be
transparent about its operation and vital signs, perform data consistency
checks, and, finally, resist unpredictable mishaps as smoothly as possible.
Also, for the system to scale to a large number of homes with possibly
different functionalities, our architecture should provide mechanisms for
reconfiguring and retasking the network after its deployment. This set
of constraints should make it possible to sustain a stable deployment for
months with little to no maintenance.

In order to fulfil the first constraint, we opted to equip our sensor
nodes with cameras with wide-angle lenses. The reasons were twofold:
first, given the broad 162-degree angle of view, a small number of camera
nodes was able to provide a large coverage area; the entire network con-



Experiences from a Home Sensor Network deployment for Assisted Living 3

sisted of a mere 5 camera nodes plus a base node, distributed over the
2-floor house as shown in Figure 1. As can be seen in that figure, the de-
ployment did not cover sensitive areas such as bedrooms and bathrooms.
This is due to the privacy issues that are raised by the presence of cam-
eras, which leads to the second reason why image sensors were picked to
begin with: part of our research is to develop an architecture of “blind”
image sensors, which provide rich information but are not able to take
pictures [6]. These sensors do not behave like typical imagers: their
pixels are capable of asynchronous computation, and provide a summa-
rized form of the data in the image as a continuous data stream — not
in frames. Upon completion, this imaging platform will likely replace
the off-the-shelf cameras used in this deployment, for added privacy and
processing speed.

Figure 1. Floorplan of deployment house, including node positions and approximate
coverage. The left side shows the bottom (street) level, and the right side shows the
top level.

Despite the small number of nodes in the deployment, the sheer
amount of data that it must process is sizeable. Considering that each
camera takes 8 320 × 240 pictures per second, over 24 Mbits must be
processed each second within the network for the cameras alone. Given
the well-known capabilities and constraints of WSNs, there is an evi-
dent need to select a compact set of attributes to be filtered from the
images and transmitted by each node. These attributes should pro-
vide information that is pertinent to our behavior-recognition platform
[4]. What is more, due to the low transmission rates encumbured by
WSNs, there is no possibility to record ground-truth data for compar-
ison and debugging. Therefore it is imperative that the transmitted



4

data give enough insight on the activities within the network for the
developer to look through and understand. With all this in mind, it
was decided that the nodes compute and transmit only a stream of the
{x, y, timestamp} values of the centroids of the moving bodies within a
scene, since bandwidth-hogging video streams were out of the question.
This reduces each node’s data transmissions from nearly 5 Mbps to at
most 442 bps.

3. System description

Figure 2. Block diagram of the entire deployment.

Figure 2 shows a block-diagram overview of the configuration of the
entire system. A sensor-network is deployed in a home that is also
equipped with a local gateway PC. Data can then be streamed to or
queried from any other computer for on-line or off-line computation,
respectively. Next, we go into more detail about each part of the system.

3.1 The network
The deployed network is composed of iMote2 [5]sensor nodes running

the SOS-1.x Operating System [3]and carrying a custom camera-board.
The iMote2 is a wireless sensor node made by Intel that contains a
PXA271 XScale processor and a 2 GHz 802.15.4 radio from ChipCon,
the CC2420 [2]. The frequency and voltage of the PXA are dynamically
scalable (13 MHz to 416 MHz), and there are five major power modes.
What is more, the iMote2 provides 256 KB of integrated SRAM, 32 MB
of external SDRAM, and 32 MB of flash memory. The nodes run the SOS
kernel with iMote2-specific drivers as well as the tree-routing module
that is standard in SOS.

As mentioned earlier, a custom camera-board sits atop each iMote2.
These boards contain an OmniVision OV7649 camera, which can capture
color images at 30 fps VGA (640×480) and 60 fps QVGA (320×240).
Our experiments with the USB version of the OV show that a resolu-
tion of 80×60 is enough for centroid calculation without loss of accuracy,
given that it is far above the Nyquist rate for locating humans in these
images. Thus, within the PXA we run a linear downsampling algorithm



Experiences from a Home Sensor Network deployment for Assisted Living 5

Figure 3. Left: the iMote2 node with a custom camera board and wide-angle
lens for added coverage. Right: picture taken by node 4 in the deployment, after
downsampling and dropping color information within the node.

to convert from 320×240 to the more manageable 80×60. After each
frame is downsampled, the new frame is compared to the one stored in
memory and the centroids are extracted from each moving object. The
node then time-stamps each centroid with the value of its real-time clock
and packs every 10 centroids together for transmission inside a message
of type CENTROID MSG. On the other hand, if a node detects 9 or
less centroids and 10 seconds have passed since the last detection, the
partially filled CENTROID MSG message is sent. This assures that
the centroids in each message have close timestamps and describe in-
formation from the same context, allowing on-line parsing. Also note
that, for data-logging reasons, each CENTROID MSG is provided with
a sequence number.

Along with the CENTROID MSGs, other messages circulate in the
network, including HEARTBEAT MSGs, and messages of type GET-
RTC and SET RTC. There are also additional messages and facilities

such as those involved in snapping and transmitting an image of either
320×240 or 80×60 resolution. Although it is currently possible to down-
load a picture from the network at any point in time, we typically do so
during the set-up process only. Therefore, a logical addition to this de-
ployment is a mechanism that blocks picture downloads at later stages,
again, due to privacy concerns.

The aforementioned HEARTBEAT MSGs were introduced after the
first point version of the deployment to periodically supply information
relating to the internal state of each node and expose the vital signs of the
network allowing the computation of network statistics. Nodes dispatch
a HEARTBEAT MSG 15 seconds after the transmission of the latest
CENTROID MSG, and then every 15 s after that repeatedly. Thus, no
HEARTBEAT MSGs are sent from a node when there is activity within
that node’s field of view.

Each HEARTBEAT MSG contains the timestamp and sequence num-
ber information for itself as well as for the last transmitted CENTROID-
MSG. With this data at hand, the status of the network can be always

inferred.



6

Finally, the two remaining message types, GET RTC and SET RTC,
are part of a simplistic time-sync protocol that was implemented. The
former is transmitted periodically every time a node boots. In the mean-
time, no other activities are allowed to take place in the node. Upon
receiving a SET RTC response message, the node then synchronizes its
real-time clock and commences capturing centroids and sending heart-
beats. All RTCs are expressed in seconds since the Epoch (midnight
UTC of January 1st, 1970). This detail allows nodes to be started and
stopped at will, with the assurance that the recorded centroids will al-
ways have unambiguous timestamps.

This feature is crucial for the implementation of the last line of defense
of the network: watchdogs. Each node’s watchdog forces a reboot when
the PXA’s internal counter (OSCR0) matches the values of the watch-
dog timer (OSMR3). This way, the watchdog timer may be advanced
by a predefined time interval within a reocurring routine to ensure that
the node reboots if that operation does not execute within a specified
timeout. In the camera-nodes, this routine is the picture ready func-
tion that is called by the camera module. Hence, the node reboots if
some mishap caused it to stop taking its 8 pictures per second. At this
point the node synchronizes its RTC then starts collecting centroids, as
discussed in the previous paragraphs.

The only node that does not operate as described above is the base
node. This node acts as a gateway between the network and a local PC.
It simply forwards to the USB all radio messages that are addressed to it,
and transmits into the network all messages dispatched by the PC. This
node also has a watchdog service, to force a reboot after long periods of
inactivity.

3.2 The local and remote PCs
Connected to the base node is a gateway PC equipped with a MySQL 5

database management system. As is common with SOS networks, this
computer constantly runs the SOS Server daemon, which provides a
standard socket interface. This way, all it takes is a standard TCP
client to send messages to and from the WSN. Note that, due to its
ubiquity, the SOS Server is not directly represented in Figure 2.

The next component in the gateway PC’s software stack is a custom
program called the Classifier. This component acts as a bridge between
the network and the database and GUI. That is, the Classifier reads
the incoming messages from the SOS Server (ie. the messages sent by
any node to the base node) and properly redirects them to the appro-
priate table in the database. All packets are stored in an all-purpose



Experiences from a Home Sensor Network deployment for Assisted Living 7

raw-packet table with a column for each SOS message field, plus an
additional column recording the reception time (see Figure 4). Addi-
tionally, centroid packets are also parsed into centroid arrays that are
stored in a distinct table. The centroid table stores all the information
from the centroid (x, y, timestamp) as well as from the packet in which
the centroid was transmitted. This redundant schema was chosen for
added performance when parsing the table data, since it does away with
expensive operations such as joins.

Another function of the Classifier is to provide the current time to the
base node’s RTC. Hence, the Classifier is able to respond to GET RTC
messages that are issued by the base. Much like the other nodes, the
base does not perform any other function while it waits for its RTC to
be synchronized, for the reasons already stated.

Raw Packets Table

time did sid daddr saddr type len data

Centroids Table

time did sid daddr saddr type len x y rtc

Figure 4. Structure of the database tables that are currently used in the deployment.

Finally, we have created a Python module called PySOS for inter-
acting with the network, as well as the graphical front-end to PySOS
seen in Figure 5. Through PySOS, it is possible to send/receive SOS
messages, post remote procedure calls (and return the reply) and set up
message listeners for asynchronous handling. Accordingly, the PySOS
Control Center front-end provides all these features through an embed-
ded Python console, but also displays all received packets in a sortable
grid view, keeping track of the time passed since each node last commu-
nicated. These utilities that proved essential in quickly determining the
status of the network are described in the section that follows.

3.3 Messaging and PySOS
As explained earlier, PySOS is a Python module that allows one to

send and receive messages to and from an SOS network. Sending a
message is as easy as issuing a post(daddr=15, did=140, type=32,
data=‘\x00\x01\x02\x03’), for example, to send a message of type 32
to module 140 on node 15. The contents of the message are 4 Bytes
containing the numbers 0, 1, 2 and 3. The parameters names (‘daddr’,
‘did’, etc) coincide with the typical SOS messaging vernacular, so the



8

Figure 5. Screenshot of the graphical user interface developed for monitoring and
interacting with the deployment.

post command should be instantly understandable to those accustomed
with SOS.

Similarly, PySOS makes it easy to receive messages from the net-
work (either by registering asynchronous listeners, or by using “block-
ing” function calls) as well as to issue remote procedure calls. The full
source code and manual to PySOS are made available through our web-
site, at http://enaweb.eng.yale.edu/drupal/pysos.

At that URL one will also find the PySOS Control Center GUI, which
works as a front-end to PySOS. The GUI can connect to any local or
remote SOS server, automatically monitoring all incoming traffic and
displaying it in a list box while keeping track of each node’s status (Fig-
ure 5). A quick look to this node list is enough to ascertain which nodes
are “alive” and which are having trouble communicating.

Through the GUI, the user may also create message filters that de-
scribe the messages that should be appended to the network activity list
box, and action triggers for designating an action that should be exe-
cuted for each matching message. These triggers can be used to parse
data in real-time, through user-defined Python functions.

An embedded Python console is also present on the PySOS Control
Center, so that any other Python and PySOS command may be issued
from the same interface. Any Python module installed in the system
may be utilized from the embedded console. As an example, the Python
module for the scripting and reconfiguration framework described in
[1]can be directly accessed in order to retask the network as appropriate.

The PySOS Control Center can be further utilized to query the stored
database of received packets. This way the GUI handles both on-line
and off-line data in a seamless manner. What is more, given the object-



Experiences from a Home Sensor Network deployment for Assisted Living 9

oriented nature of the PySOS control center, programmers may sub-class
it such that other features may be easily added without the need to mod-
ify the GUI’s source code. In this way, we have extended our internal
version of the PySOS Control Center to accomodate capabilities that are
pertinent only to our specific deployment configuration, such as down-
loading pictures from the network, plotting live and stored statistics,
making animations of the centroids on the deployment floorplan, etc.

4. Network analysis
The deployment has been running for over 8 months, with many soft-

ware upgrades in the first two months. The latest version dates from
early November 2006. Through those upgrades, some features were
added (such as tracking statistics with the heartbeat messages) and a
few bugs were fixed. Interestingly, the majority of the bugs encoun-
tered — and the hardest to track down — were in the MAC layer of
the CC2420 code from SOS. After the discovery of these bugs, the radio
code was further modified for increased robustness with the addition of
CRC checks, and the implementation of ACKs and retries.

Figure 6. Plot depicting the type of traffic produced by each node over time. Each
packet is represented by a thin vertical line and the colors show the packet type. Blue
indicates HEARTBEAT MSGs while black is for CENTROID MSGs.

Figures 6, 7 and 8 depict the behavior of the deployment over a win-
dow of 25 days. The first one, Figure 6, shows the nature of the traffic
on the network. Each heartbeat packet sent by a node is drawn as a blue
vertical line, while each centroid packet is represented in black. From
this depiction it is clear that centroid packets are typically sent by mul-
tiple nodes at nearly the same time, as it is common for actions to span
the coverage area of more than one node.

Figure 7 shows a cumulative plot of the number of centroid packets
that never reached the base. The figure shows that, as expected, there
is a rough correspondence between packet drop rates, distance from the



10

Figure 7. Cumulative plot showing the number of dropped centroid-carrying packets
over the course of 25 days. Y-scale is ×10−4.

base, and number of obstacles in between. Two nodes, however, do
not follow this analysis: nodes 4 and 10. Remarkably, despite being
close to the base, node 4 showed the worst centroid drop rate. Also
worth noting is the apparent correlation between the sudden spikes in
packet drop across multiple nodes. This is especially when comparing
the behavior of nodes 4 and 10. Incidentally, these two nodes are the
two that are the closest, geographically. The source for these jumps
must be associated with the observation from the previous paragraph:
that centroids are usually sent in bursts by many nodes at the same
time. In other words, given the physical properties of the events being
sensed, medium contention may be ocurring each time a person moves
from one sensor to the next. This would be especially accentuated when
multiple people are in the house. If this is the reason for the packet
drops, then the number of dropped heartbeat packets (Figure 8) must
exhibit a much different behavior, due to the regular traffic pattern of
the heartbeat transmissions.

Indeed, this is what is seen in Figure 8. Had the cause of the centroid
drops for any of the nodes been an independent factor such as antenna
orientation, then the number of dropped heartbeats would follow the
suit. Instead, what is seen is that nodes 4, 10, 12 and 15 drop around
4000 packets each, with node 4 dropping most of them at once, very
early on. After that moment, nodes 4 and 6 show a similar drop rate,
as evidenced by the slope of their plots.

In the 25-day window, there were close to 23 thousand dropped cen-
troid packets, making up 10.2% of all attempted centroid transmissions.
Since heartbeats are only sent when there is no centroid activity, and
since they are transmitted in relatively sparse intervals, the smaller num-
ber of dropped heartbeats (around 16.5 thousand, or 1.56% of all at-
tempted transmissions) seems to agree with the analysis that the major



Experiences from a Home Sensor Network deployment for Assisted Living 11

Figure 8. Cumulative plot showing the number of dropped statistics-carrying
(heartbeat) packets over the course of 25 days. The plot shows a smoother behavior
that contrasts with the bursty quality of the dropped rates in Figure 7

culprit of packet drops is packet collisions due to the traffic pattern
imposed by centroid transmissions.

5. Conclusion
We developed and deployed a sensor network for home activity moni-

toring, complete from the camera board to the graphical user interface.
The network has been functioning properly for extended periods encom-
passing several months. This is due to the preventive measures taken in
the design phase, ranging from the use of a watchdog (which allowed the
network to function despite the initial bugs in the radio code), to the
simple act of protecting the nodes by a plastic enclosure. Oftentimes,
such details are overlooked and end up raising many issues. Moreover,
inspite of moderate packet loss rates and simplistic approach to time
synchronization, the data contains the right information for use in our
research.

Future improvement may include a more appropriate routing algo-
rithm to be decided after careful analysis of the longterm network statis-
tics. Also present on the list are a time synchronization method with
better accuracy, improvements to the sensing layer and the addition
of debug messages to be sent through the radio each time an “assert”
statement fails.

Returning to the initial requirements set forth in Section 1.2, all but
one have been tackled in the course of this paper: there is still the ques-
tion of whether the data produced by the network is consistent. Consis-
tency checking (does the data make sense? ) differs from simple validity
checks (is the data within the appropriate values? ), and typically goes



12

unhandled. Part of our ongoing research is to employ a data consistency
check that arises naturally from our behavior recognition platform.



References

[1] A. Bamis, N. Singh, and A. Savvides. An architecture for dynamic reconfigura-
tion of data flows in sensor networks. In Submitted to the Fourth Workshop on
Embedded Network Sensors (EmNets ’07), 2007.

[2] Chipcon: CC2420 802.15.4 compliant radio. http://www.chipcon.com.

[3] Chih-Chieh Han, Ram Kumar, Roy Shea, Eddie Kohler, and Mani Srivastava. A
dynamic operating system for sensor nodes. Technical Report NESL-TM-2004-
11-01, University of California Los Angeles, Networked Embedded Systems Lab,
November 2004.

[4] D. Lymberopoulos, A. Ogale, A. Savvides, and Y. Aloimonos. A sensory gram-
mar for inferring behaviors in sensor networks. In Proceedings of Information
Processing in Sensor Networks, IPSN, April 2006.

[5] L. Nachman. Imote2, http://www.tinyos.net/ttx-02-2005/platforms/ttx05-
imote2.ppt, 2006.

[6] T. Teixeira, E. Culurciello, E. Park, D. Lymberopoulos, and A. Savvides. Address-
event imagers for sensor networks: Evaluation and modeling. In Proceedings of
Information Processing in Sensor Networks, IPSN, April 2006.


