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An increasingly common requirement of computer systems is to extract information regarding

the people present in an environment. In this article, we provide a survey of the inherently

multidisciplinary literature of human-sensing , focusing mainly on the extraction of five commonly
needed spatio-temporal properties: namely presence, count, location, track and identity. We

discuss a new taxonomy of observable human properties and physical traits, along with the sensing

modalities that can be used to extract them. We compare active vs. passive sensors, and single-
modality vs. sensor fusion approaches, in instrumented vs. uninstrumented settings, surveying

sensors as diverse as cameras, motion sensors, pressure pads, radars, electric field sensors, and
wearable inertial sensors, among others. The goal of this work is to expose the capabilities and

limitations of existing solutions from various disciplines, to structure them into a unified taxonomy,

and to guide the creation of new systems and point toward future research directions.

Categories and Subject Descriptors: I.2.9 [Artificial Intelligence]: Robotics—Sensors; I.4.8

[Image Processing and Computer Vision]: Scene Analysis—Sensor Fusion; Tracking

General Terms: Algorithms, Design

Additional Key Words and Phrases: Human counting, human detection, identification, localiza-

tion, people counting, person detection, sensor fusion, tracking

1. INTRODUCTION

As the sensor network and ubiquitous computing communities increasingly focus on
creating environments that are seamlessly aware of and responsive to the humans
that inhabit them, the need to sense people in those environments will become ever
more pressing. Human-sensing encompasses issues from the lowest level instanta-
neous sensing challenges all the way to large-scale data mining. Several questions
circumscribe the problem. For example, we might ask of our sensors: Is there a
person in this room? How many people are in this room? What is each person
doing? What does each person need? Can we predict what they are going to do
next?
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The simplest applications of human-sensing make direct use of such information
to, for instance, open a door as people pass, turn lights on/off when a room is
occupied/empty, or lock a computer when the user moves away. However, looking
further ahead into the future, a medical application may ask “Which person in this
room is John, and what is his body temperature and heart rate?”. And, further,
if John is found to be sick and contagious, it may wish to know “Who has he been
in contact with in the past 24 hours?” In addition, computing applications of the
future will likely infer people’s moods from the analysis of their speech, posture,
and behavior, to make better decisions not only about the people themselves but
concerning a variety of seemingly-unrelated subjects as well (i.e. affective computing
[Picard 2000]). Going even further, such information can be gathered about groups
of people, and groups of groups people, and so on, to make increasingly higher-
level decisions. And so, the sheer breadth of these requirements make it clear
that human-sensing is an inherently multi-faceted problem. Major contributions
have traditionally arisen from the Radar and Computer Vision communities, while
more recently Robotics and Sensor Networks researchers have proposed a variety
of creative solutions based on multiple-sensor and multiple-modality systems. To
expose the progress that has been made in each direction and to identify new
opportunities, this paper provides an overview of the solutions that exist today,
using a unified vocabulary to express the advantages and disadvantages of each,
and serve as a guide for the design of future systems.

Given the broadness of the field, the scope of this survey is restricted to sensor
systems that detect a well-defined set of five low-level spatio-temporal properties,
namely: presence, count, location, track, and identity. We choose to focus on the
capabilities and limitations of the existing sensing solutions rather than empha-
sizing their specific implementation details. We review solutions where people are
uninstrumented and possibly adversarial, as well as those where people carry sen-
sors, such as GPS. In the discussion, we find that some modalities emerge as clear
winners in specific scenarios. Other approaches, we argue, may be employed in
resource-constrained environments, or leveraged in sensor fusion.

The rest of this paper is organized as follows. In Section 2, we discuss the major
obstacles and noise sources that make human-sensing such a challenging task. We,
then, introduce a taxonomy of human-sensing in Section 3, where we also discuss
physical human traits and the sensing modalities to detect them. Afterwards,
a review of existing approaches is provided in Section 4, which is subdivided into
uninstrumented and instrumented approaches, single-modality versus sensor fusion.
A summary of our findings and a discussion of the open research directions are given
in Section 5, and Section 6 concludes the paper.

2. CHALLENGES

More so than most other object-detection and sensing tasks, human-sensing is a
challenging endeavor for a variety of reasons. Common obstacles, irrespective of
sensing modality, can be grouped into six broad classes:

— Sensing noise: At the lowest level, all sensor data is affected by noise related
to the sensor hardware technology being used. Sensors that rely on a very small
number of particles (i.e. photons in an image sensor, or electrons in an ultra-low
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current circuit) are prone to shot noise due to statistical fluctuations in the particle
arrival rates. Other types of sensing noise include thermal noise, 1/f noise (i.e. pink
noise), and avalanche noise, as well as aliasing and quantization noise. However,
since these types of noise have been abundantly studied (and, therefore, may be
alleviated through well-known sensor-design considerations) we will not consider
them any further in this paper.

— Environmental variations: Unexpected or sudden changes in environmental
conditions are some of the most common sources of errors that occur in real-world
scenarios. Radar signals, for instance, can be dampened by rain or fog, PIR sensors
are often triggered by heat currents flowing from HVAC (Heating, Ventilating,
and Air Conditioning) systems, and camera-based systems are affected by moving
foliage, lighting variations, shadows, and so on.

— Similarity to background signal: The process of separating a person from
the background signal is at the core of all human-sensing . However, this can be
challenging outside a laboratory setting, as background signals in the real world can
grow arbitrarily complex. The most obvious instances of such sensing failures come
from Computer Vision, where background-modeling is still a wide-open problem. In
other domains, such as with ranging sensors (radars, ladars, sonars), the presence
of unwanted signals with the correct frequency spectrum or timing characteristics
(due to multipath, for instance) can often fool the system into producing phantom
detections.

— Appearance variability and unpredictability: People sport non-rigid bod-
ies which can be arranged in any number of poses, along at least 244 degrees of
freedom [Zatsiorsky 1997]. Furthermore, people’s this appearance-space greatly in-
creases as we consider different types of clothing, hats, backpacks, purses, and other
carried objects. Finally, people can also behave unpredictably, moving in paths that
may change on a whim, and thus present an enormous challenge to localization and
tracking systems.

— Similarity to other people: In some applications, such as tracking or person
identification, the main challenge to be overcome is the high degree of similarity
amongst people. Moreover, physical limitations of the sensors themselves often
lead to a further loss of personally-identifying information in the acquired signal
— and likewise with environmental factors such as poor lighting, or interference
sources. This is further aggravated in some situations such as corporate and military
scenarios, where people wear similar-appearance uniforms.

— Active deception: In adversarial scenarios, it is important to consider possible
attack vectors, through which a human-sensing system may be either fooled or
debilitated. Jamming signals, for instance, are often used in military scenarios to
disable the enemy’s radars and communication systems. Other deceptive techniques
may be as simple as turning off the lights in an area covered by cameras, or walking
slowly to fool motion sensors.
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Fig. 1. Taxonomy of the human properties that are involved in the human-sensing
problem. Arrows indicate an inner hierarchy of properties. For instance, knowl-
edge about “count” implies knowledge of “presence”, and “action” often implies
knowledge of “pose”.

3. HUMAN-SENSING TAXONOMY

We classify under the large umbrella of “human-sensing ” the process of extracting
any information regarding the people in some environment. Such information,
as summarized in Figure 1, can be subdivided into three observable categories:
spatio-temporal properties, behavioral properties, and physiological properties. In
this survey we focus on the inference of spatio-temporal properties (STPs) only.
These consist of low-level components regarding the position and history of people
in an environment. More specifically:

(1) Presence — Is there at least one person present?
Presence is arguably the property that is most commonly sought-after in ex-
isting real-world applications. Some of the most common presence-sensors cur-
rently deployed are PIR motion sensors (used in automated lighting systems,
for instance) and scalar infrared range-finders (used in the safety mechanisms
of elevator doors). In cooperative scenarios, though, where people can be in-
strumented with portable or wearable devices, solutions such as RFID (radio-
frequency identification) are becoming increasingly common.

(2) Count — How many people are present?
The number of people in an environment can be inferred by either employing a
person-counting sensor (or sensors) that covers the entire area of interest, or by
counting people at all the entry and exit points. Commercial people-counting
solutions range from thermal imagers [SenSource ] and break-beams, to simple
mechanical barriers such as turnstiles.

(3) Location — Where is each person?
Location-detection, or “localization”, consists of obtaining the spatial coordi-
nates of a person’s center of mass. Localization can be achieved using instru-
mented (such as GPS) or fully uninstrumented solutions (such as cameras). In
addition, since a grid of presence sensors can also be used to localize people,
localization can be considered a higher-resolution generalization of presence-
detection.
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Fig. 2. The five spatio-temporal properties considered in this survey.

(4) Track — Where was this person before?

Tracking is the process of solving the correspondence problem, that is, extract-
ing the spatio-temporal history of each person in a scene. Equivalently, tracking
may be described as recovering a person’s relative identity2. For example, if
upon detection a person is labeled with a temporary ID (e.g. “person 6”) then
tracking is the problem of specifying at each subsequent sampling of the scene
which detected person is the same “person 6”. This temporary ID is typically
lost in the presence of sensing gaps, such as when the person leaves the scene
and returns later. At that point, yesterday’s “person 6” will be given a new
ID when re-detected. Situations that lead to the loss of a person’s relative
ID are often called ambiguities. In the remainder of this text, we will use the
term piecewise tracking to qualify a tracker that is not capable of adequately
handling ambiguities.

(5) Identity — Who is each person? Is this person John?

At a first glance it may seem odd to group “identity” into the category of spatio-
temporal properties. However, identification is nothing more than a natural
extension of tracking where each person is always assigned the same globally
unique ID rather than solely relative IDs. Therefore, identity-detection extends
tracking so that it becomes possible to recover a person’s spatio-temporal his-
tory even across sensing gaps, such as when one leaves the scene and returns
the following day.

The five spatio-temporal properties are depicted in Figure 2. The “information”
arrow in the figure represents the following cumulative quality: if property n is
known for all people at all instants in an environment, then property n− 1 is also
known. For instance, Count necessarily leads to Presence since Presence is the
condition count > 0. Similarly, a device that extracts the Location of all people
in an environment must also produce the total Count, a device that tracks people
must know people’s locations, and a device that identifies people inherently solves
the correspondence problem (Tracking).

Of course, numerous applications also require knowledge of human properties
other than the STPs. Some are physiological properties (such as weight, tempera-
ture, heart rate, blood pressure, or skin/hair/eye color) while others are behavioral

2Given the above definition, the frequently-used term “single-target tracking” does not make logi-
cal sense, as there cannot be any ID ambiguities when it is known there is only one target present.

What generally is meant by “single-target tracking” we here call by the name of Localization.
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Fig. 3. Physical traits that may be used to measure the five spatio-temporal prop-
erties.

properties (pose, action, activity, and so on)3. Clearly, the subject of human-sensing
is immense, both due to the breadth of human properties that may be of interest,
and the depth of the sensing solutions used to extract them. For practical reasons
we must, therefore, limit the scope of this survey to the research problems that we
consider are the most pervasive ones. In our experience these tend to be exactly
the detection of presence, count, location, track, and ID, which are at the core of a
majority of human-sensing applications. In the discussion that follows we analyze
the physical traits from which these five spatio-temporal properties can be inferred,
and the sensing modalities that can be used to measure them.

3.1 Human Traits Classification

At the lowest level, human-sensing is equivalent to measuring, directly or indirectly,
one or more of the myriad ways humans impact their environments — or what
we call human traits. Strictly speaking, human traits are environmental changes
effected either by human presence itself (static traits) or voluntary human motion
(dynamic traits). Furthermore, people may also carry objects such as mobile phones
and RFID, which lend their signals and sensing capabilities to the person who is
carrying them. This gives rise to the extrinsic human traits, which are the ones
that depend on carried objects. This classification is depicted in Figure 4, and
further explained below:

— Static, Intrinsic Traits: Static traits stem from the physiological properties
from Section 3, and are produced whenever a person is present, irrespective of what
he or she is doing. Common static traits are weight and shape. While weight is
typically measured directly through simple piezoresistive or piezoelectric sensors,
shape is measured indirectly by intersecting a person’s shape with geometric lines
which are either actively produced by the sensor itself (in the case of radars, for ex-
ample) or passively appropriated from the environment (e.g. cameras). Therefore,
shape is a trait that must be extracted from one of three other traits: reflectiv-
ity (with cameras or radars, for example), attenuation (tomographic sensors), or
emissivity (thermal imagers). Another static trait is the involuntary motion of

3Note that like spatio-temporal properties, the behavioral properties can also be organized in a

hierarchy, as shown through the use of arrows in Figure 1.
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Intrinsic Traits

Static Traits

EmissivityThermal ImagersReflectivityPhotodetectorsCamerasRanging SensorsShapeWeightPressure SensorsContact Sensors ScentChemosensors Internal MotionDoppler-Shift Sens. GaitCamerasDoppler-Shift SensorsWearable Inertial Sens. Acoustic SensorsVibrationInertial SensorsSeismic Sensors
AttenuationTomographic SensorsBreakbeam SensorsEF Sensors Extrinsic Traits

Dynamic TraitsWearable Doppler-Shift Sens.Wearable RFIDWearable Ranging SensorsStatic TraitsWearable Landmark Sensors Dynamic Traits

External MotionMotion SensorsWearable Inertial Sens.CamerasPressure SensorsRanging SensorsTomographic SensorsDoppler-Shift SensorsThermal Imagers
Fig. 4. Taxonomy of measurable human traits, listing the sensing modalities that
can detect them. Italics are used to denote active signaling sensors, and the word
wearable indicates instrumented approaches.

internal organs, such as the heart and lungs. This can be measured through
skin-penetrating radio and ultrasound signals. Finally, a relatively new avenue
for human-sensing lies in scent detection [Pearce et al. 2006]. However, although
chemosensors have been developed for a wide variety of compounds (used, for in-
stance, in bomb-sniffing [Yinon 2003] or detection of spoiled food), it is still not
well-known which molecules and chemical compounds present in the human scents
are best suited for person detection. Recent studies with gas chromatography-mass
spectrometry have shown it is possible to personally-identify people from their
sweat, as well as to detect their gender [Penn et al. 2007]. Furthermore, CO2 levels
have also been used to detect the presence of people, albeit with slow response times
[De Cubber and Marton 2009]. Other than these initial explorations, scent-based
systems are highly uncommon and thus not further investigated in this survey.

— Dynamic, Intrinsic Traits: Dynamic traits are only present when people vol-
untarily move, and are not detectable for reasonably stationary persons. We divide
these into three categories: external motion, gait, and vibrations. External mo-
tion is defined as any change in a person’s pose or in the position of their BCOM
(body center of mass). This, of course, includes all external motion due to walking.
However, we single out a person’s gait4 as a special case of external motion, as it
has been shown to possess personally-identifying information that other examples
of external motion do not. As for vibrations, these are the pressure waves that
people produce either directly (in the form of speech, for example) or indirectly (in
the form of sounds and vibrations from footsteps), which can be measured with
microphones and accelerometers.

— Extrinsic Traits: Extrinsic traits are those that stem from objects or devices
carried by a person. Approaches based on extrinsic traits stem commonly from

4I.e. the characteristic motion pattern displayed by people’s limbs, torso, and head during a

walking or running activity.
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sensing modality example sensors

Binary sensors Contact sensors, Breakbeams, PIRs, Ultrasound motion sensors
Motion sensors PIRs, Scalar Doppler-shift sensors
Pressure sensors Piezo-resistors, Piezo-electric materials
Electric field sensors Capacitive floor tiles, Capacitive antennas
Vibration sensors Seismometers, Accelerometers, Electrostatic and Laser microphones
Scanning range-finders Radars, Ladars, Sonars
Doppler-shift sensors Radios, Ultrasound transducers
Shape-detecting networks Radio-tomographic networks, Ultrasonic-ranging networks
Cameras CMOS and CCD image sensors, Specialized motion- or edge-detecting imagers
Thermal imagers Microbolometer arrays, PVDF (Polyvinylidene Fluoride) arrays
Device-to-device ranging Radio pairs, Radio-Ultrasound pairs
Envir. recog. sensors WiFi fingerprinting, Wearable microphones, Wearable cameras
Inertial sensors Accelerometers, Gyroscopes, Magnetometers
ID sensors RFID, any radio or other means of communication
Chemosensors CO2 sensors, Humidity sensors

Table I. Examples of different sensors belonging to each sensing modality from our taxonomy.

Robotics and Sensor Networks. We subdivide these into two groups. The first
group, borrowed traits, represent the characteristics that in reality belong to
devices placed on the person or people of interest. The second, environmental
traits, are physical characteristics of the environment, which are sensed by wearable
devices on the person’s body to provide location measurements. Hence, as shown
in Figure 3, the main distinction between environmental and borrowed traits lies
in the direction of the information flow (the arrow, in the figure). Most borrowed
and environmental traits are static, that is, they do not require the person to be
moving. The main exceptions are Doppler-shift based device-to-device approaches
[Kusy et al. 2007][Chang et al. 2008].

Note that the separation between borrowed and environmental is not always
clear. GPS, for instance, which was originally a classic example of a borrowed-
trait sensor (in that the person “borrowed” the signaling properties of the GPS
constellation and receiver), can be said to lie somewhere between borrowed and
environmental. The argument for this is that the GPS satellites constitute, at this
point, infrastructure that can be used freely by all of humanity, and therefore their
signals have become very much part of the environment.

3.2 Sensor classification

We define the term sensing modality to denoting classes of sensors that share some
common property. The sensors that make up the modalities used throughout this
paper are given on Table I. However, as a result of the enormous arsenal of sensing
modalities available, each of which can be used to leverage a great many different
human traits, the sheer number of approaches to human-sensing that have been
proposed in the literature is immense. To describe all of them is an impossible
task. In the following sections, we limit ourselves to a selection of approaches
which, in our view, are either the most useful, the most ubiquitous, or the most
ingenious. For this, we define the following terminology:

— Setting: Approaches are classified as instrumented if they measure extrinsic
human traits, thus requiring each person to carry a device on themselves. In con-
trast, uninstrumented approaches are those that solely rely on intrinsic traits, and
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can thus be used in adversarial scenarios where people may be actively trying to
fool the system.

— Signaling: The term passive signaling is used to refer to approaches which
measure signals that are readily available from the environment. Meanwhile, active
signaling denotes those approaches which transmit their own signals and measure
the properties of the responses.

— Network density: Sensors have different capabilities when used by themselves
versus when employed in a dense network. We quantify the network density (ND)
using the order of magnitude (in base 2) of the number of sensors required to provide
some specific service in an area A. For example, if a single camera can localize a
person within area A, then the density of this solution is log2(1) = 0. If, instead of
cameras, the same area A is instrumented with a network of 36 pressure-sensitive
floor tiles to a similar effect, then the density increases to log2(36) = 5.17. Since
ND is logarithmic, the difference between density values should remain constant as
the sensing area A increases (so long as the number of sensors scales linearly with
A). For instance, if the sensing area triples to 3A, requiring 3 cameras or 108 floor
tiles, the density difference will remain the same: log2(108) − log2(3) = 5.17. Of
course, exact values for ND are application- and implementation-dependent, and the
numbers given in this paper should serve merely as a rough guide for comparison.
In this survey, our ND numbers were estimated based on an indoor “unit room”
of dimensions 5m× 4m× 3m, with thick walls on all sides (plus floor and ceiling),
and an average of 5 people.

4. SURVEY OF EXISTING APPROACHES

Before we can finally delve into our survey of human-sensing approaches per se,
we must take a moment to make a few clarifications. First, that our goal in this
section is to introduce and organize the existing literature, rather than to detail
the exact algorithms that they employ. This is because common trends in the
algorithmics of the reviewed solutions are currently rather limited across different
sensing modalities.

The second clarification we must make is that since the authors of the solutions
reviewed in this section often do not agree on common performance metrics or even
experimental scenarios, we are forced to compare different approaches in rather
qualitative terms. Thus, we use words such as “accuracy” and “precision” loosely to
denote a measure of the average error (e.g. the mean error of a person-localization
approach) and a measure of classification correctness (e.g. in a person-detection
approach, the ratio of true positives divided by all classifications), respectively.
The exact meaning of these will vary from modality to modality, and is explained
inline with the text where necessary. Other metrics, such as latency and algorithmic
complexity are, more often than not, entirely missing from the surveyed papers, and
thus cannot be consistently reported here.

Our final clarification is with regards to application scenarios. In this work
we oftentimes make use of two diametrically opposed scenarios to guide the dis-
cussion: resource-constrained vs. performance-driven. In the former, accu-
racy/precision take a secondary role to resource constraints such as energy, cost, or
privacy. Examples include person count estimation in public spaces and customer-
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tracking in supermarkets. On the other hand, in performance-driven scenarios the
most pressing demand is for high-accuracy, high-precision data, typically for use
in control systems, medical diagnosis, entertainment, security, or surveillance. An
example is a medical application that assesses the patient’s response to a new treat-
ment by monitoring his motion in high resolution.

4.1 Uninstrumented, Single-Modality Approaches

We start this discussion with a collection of uninstrumented, single-modality sens-
ing approaches. These are characterized by sensors placed on the environment, and
are the most commonly-found solutions in existing real-world deployments. How-
ever, existing deployments are typically characterized by simple usage of raw data
without any high-level processing, such as with motion-sensitive lighting or with
CCTV (closed-circuit television) networks. In contrast, below we survey the use of
such sensors for “smart” applications.

4.1.1 Binary sensors.
A variety of sensing modalities can be grouped into the broad category of “binary

sensors”. In the context of human-sensing , binary sensors are those that return
a logic 1 if human presence is detected within a certain sensing area, otherwise
returning a logic 0. The modality of binary sensors includes sensors such as break-
beams, contact sensors, PIRs, and scalar Doppler-shift sensors, all of which are
currently used in resource-constrained scenarios.

In recent years there has been a growing tendency to research algorithms that
operate on a purely abstract model of a binary sensor rather than on specific sensors
such as PIRs [Aslam et al. 2003][Oh and Sastry 2005][Kim et al. 2005][Xiangqian
et al. 2008]. Such a generalization is often desirable as it reveals techniques that
are applicable to this entire superclass of sensors. This simplifies the deployment of
highly-heterogeneous networks of binary sensors such as door sensors, on-off current
sensors, PIRs, photodetectors scattered across an environment. However, the main
disadvantage of this is that it can overlook some inherent differences between sensing
modalities. For instance, binary sensors that rely on human motion (e.g. PIRs)
tend to produce bursty positive detections and a large number of false negative
detections.

In single-node configuration, binary sensors can only be used to detect presence,
and nothing more. In contrast, when used in a high-density network these sensors
become capable of counting, localizing and partially tracking. Localization accuracy
(as well as the maximum number of people that can be counted) depends both on
the number of sensors and on the dimensions of the sensing areas of individual
sensors. This is quantified in [Shrivastava et al. 2006]. With regards to tracking,
binary sensing approaches can only provide piecewise tracking. This is because the
binarization of the measurement space discards personally-identifying information
that is vital to the resolution of tracking ambiguities.

Below, we separately consider three binary sensor approaches: motion sensors,
pressure-sensitive floor tiles, and electric field (EF) sensors.

— Motion Sensors:

classification: passive, uninstrumented, ND=2.
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capabilities: detects presence, but only when people move; when in a network, can
count and localize with accuracy that depends on number of nodes; can
also track piecewise (that is, between ambiguities).

“Motion sensor”, more often than not, is a name used to describe PIR sensors.
However, scalar Doppler-shift sensors also exist and, for most part, can be readily
used in the place of PIRs. Most of the motion-based methods follow a strictly
geometric formulation, where the path of each person is calculated deterministically
from intersecting sensing areas as in [Shrivastava et al. 2006]. More and more,
however, motion-based tracking approaches have been using higher-level inference
tools such as Kalman or particle filtering [Schiff and Goldberg 2006].

The advantages of PIRs are their cheap cost, low power requirements, and sim-
ple installation procedure. Their main disadvantages are: (1) they cannot detect
people who are stationary, thus leading to a large number of false negatives; (2)
their output is highly bursty. Some commercial off-the-shelf sensors use a heuristic
solution to make up for this, by ignoring detections that fall within a “refractory
period” of an earlier event. These disadvantages are largely ignored by the vast
majority of PIR-based research by limiting their system to single-person scenarios
and/or assuming people are always moving. Assuming these are properly addressed,
PIR networks have the potential to become the de-facto sensors in very-large-scale
resource-constrained systems.

— Pressure-Sensitive Tiles:

classification: passive, uninstrumented, ND=4.

capabilities: detects presence; when in a network, can also count, localize, track piece-
wise, and identify people from small databases.

Most, although not all, solutions based on the installation of special-purpose floor
tiles rely on pressure measurements. Research dating back to 1994 [Pinkston 1994]
used force sensing resistors to measure the location and foot pressure of a single per-
son. However, even as early as 1988, similar technology was already commercially
available in the form of Nintendo’s Power Pad. More recently, Murakita et al. used
a Markov chain Monte Carlo (MCMC) particle filter to track people based on a
sequence of footsteps [Murakita et al. 2004]. The main challenge that they tackle is
that people have two contact points with the floor. This leads to an additional type
of correspondence problem, where the objective is to select the two contact points
that belong to the same person. The authors report a mean localization accuracy of
0.21m in the direction of motion, and 0.01m in the perpendicular direction. Their
system can robustly disambiguate between people who are separated by at least
1.1m, performing poorly, however, if the separation is 0.5m or less.

More surprisingly, it has been demonstrated that floor tiles can also be used to
identify people from the force profile of their footsteps [Orr and Abowd 2000][Mid-
dleton et al. 2005]. For this, Orr et al. considered the time series of the pressure
exerted by a person’s entire foot. They were able to achieve 93% precision using
a 15-person test sample that included multiple different footwear configurations.
They also report that footwear does not greatly affect the precision of their identi-
fication approach. Middleton et al., on the other hand, have used arrays of binary
contact sensors to measure the time spent at different areas of a person’s feet. They
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measure the stride length, stride cadence and heel-to-toe ratio to identify 12 out
of 15 test subjects (80% precision). It is possible that a much higher identification
precision may be achievable using a high-resolution floor tile system such as the
one presented by Morishita et al. [Morishita et al. 2002], although we express some
doubt as to whether this ID inference could resist larger databases, say with more
than 20 subjects.

— Electric Field Sensors:

classification: active, uninstrumented, ND=4.

capabilities: detects presence; when in a network, can also count, localize, track piece-
wise, and identify.

Capacitors can be used to detect people’s presence and to measure their distance
with good accuracy. The basic operating principle of EF sensors is that an AC
signal applied to a capacitor plate will induce a similar signal in a receiving plate.
The effect of human presence between the transmitter and receiver can, then, be
measured as changes in the received current. The specifics vary depending on three
possible configurations (transmit mode, shunt mode, and loading mode), which are
somewhat analogous to the emissivity, attenuation, and reflectivity traits discussed
in Section 3.1. See [Smith et al. 1998] for an in-depth discussion. Electric field
sensors are often used as binary proximity sensors that are placed either as antennas
on a wall or as capacitive plates inside floor tiles [Henry et al. 2008]. In both
cases, commercial off-the-shelf EF sensors are already available in the market today
[Future-Shape ]. Valtonen et al. take a hybrid approach by combining floor tiles
and antennae on the walls to track a moving person with an accuracy of 41cm
[Valtonen et al. 2009]. The main advantage of electric field sensors lies in their
simplicity, as they consist simply of an oscillator and either one or two capacitor
plates. However, these plates are generally much larger than other sensors that we
review in this survey, such as cameras, radars, and PIRs, which can be cumbersome.
Furthermore, like other binary sensors, EF sensors require a high network density
to provide accurate locations.

4.1.2 Vibration Sensors.

classification: passive, uninstrumented, ND=3.

capabilities: detects presence; when in a network, can also partially count, localize
and track piecewise.

Vibration-sensing devices placed on the floor can measure from a distance the
signals produced by a person’s footsteps. In outdoor applications, where these
sensors are typically called “seismic sensors”, or “geophones”, Pakhomov et al. re-
port footstep-based person detection at distances of up to 20 meters [Pakhomov
et al. 2003] while, more recently, Audette et al. have achieved 80% detection rates
at up to 38m even in the presence of noise from nearby vehicles [Audette et al.
2009]. Indoors, Diermaier et al. have shown a similar system using MEMS (micro-
electromechanical systems) accelerometers to detect room-level locations [Diermaier
et al. 2008]. In both of these scenarios, it may be possible to localize people through
a geometric localization method, as is often done for acoustic source localization
[Potamitis et al. 2004][Cauwenberghs et al. 2005]. Potamitis et al. , for instance,
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localize speakers in a room based on the time delay of arrival of the acoustic signal
at different microphones [Potamitis et al. 2004]. These noisy location estimates are
processed with a Kalman filter, leading to a localization error between 10cm and
40cm in their simulations.

The great selling-point of vibration and acoustic sensors is the simplicity of the
signal processing steps. For example, Cauwenberghs et al. have developed a 4-
microphone acoustic localization sensor node that can perform bearing angle calcu-
lation in hardware with a standard error of less than 2 degrees [Cauwenberghs et al.
2005]. Still, although all of these approaches are useful in relatively quiet scenarios,
in busier environments the signals produced by multiple people interfere with one
another, leading to a problem that in the audio domain is known as the “cocktail
party problem”. In the case of microphones, higher resolution location measure-
ments can be obtained from directional sensors that provide bearing information
[Moore and McCowan 2003].

4.1.3 Radio, Ultrasound, Laser.
Among the radio, ultrasound, and laser approaches, several similarities can be

found. As such, we find it convenient to unify here the approaches based on those
three types of waves based on their signaling properties.

— Scanning Range-Finders:

classification: active, uninstrumented, ND=0.

capabilities: presence, counting, location, piecewise tracking.

Range-finders are devices that transmit a signal into the environment and mea-
sure either the timing or energy of the response echo to calculate distance. The
transmitted signal may consist of short series of pulses (ultra wideband) or a mod-
ulated carrier wave. Then, to obtain a 2D or 3D image of the environment, range-
finders are often aimed at different bearings, in a process called “scanning”. This
can done by (1) physically rotating the transmitter, receiver, or a reflector, or (2)
using multiple transmitters at different locations and phases (known as a phased
array) to produce constructive and destructive interference at known spatial coor-
dinates. Alternatively, it is also possible to extract this type of spatial information
through geometric reasoning (i.e. triangulation, trilateration, or multilateration)
using multiple receiving antennas. Given the technical complexity of generating
and processing these types of signals, scanning range-finders are typically reserved
for performance-driven applications such as autonomous cars, UAVs, gaming, etc.
Depending on the medium used, scanning range-finders have been traditionally
called by different names: radar (radio waves), sonar (sound or ultrasound), lidar
(light), ladar (laser).

Although most of these sensors can, outdoors, easily extract 2D or 3D snapshots
of the environment5, in indoor environments the effects of multipath and scattering
on clutter add considerable noise to their range and bearing measurements. This
makes it difficult to detect people based on their shape alone. Zetik et al. make up
for this by taking an approach that is often followed in computer vision: background

5With the exception of lidars. These often suffer from interference from the sunlight when outdoors

and, therefore, tend to work better either indoors or at night.

ENALAB Technical Report 09-2010, Vol. 1, No. 1, September 2010.



14 · Thiago Teixeira et al.

subtraction. In their 2006 paper [Zetik et al. 2006], the authors describe a method to
adaptively model the background signals obtained from an ultra-wideband (UWB)
radar. This, they write, allows them to localize people with an accuracy of around
40cm. In an unusual approach to the detection problem, Chang et al. have used
UWB radars to detect people outdoors by modeling their scatter signature [Chang
et al. 2009], rather than relying on shape. They show experimentally that this
signature acts as a point process, where the time-of-arrival of the signals scattering
off a person was found to follow a Gamma distribution, with its mode at the
person’s location. With this insight, they were able to segment people outdoors
by leveraging solely their scatter signature. They extend their approach to detect
and track multiple people using a multiple-hypothesis tracker [Chang et al. 2009].
The authors experimentally compare their ranging and velocity inferences to those
of ladars, with very positive results.

Compared to radio and ultrasound approaches, laser-based ranging is relatively
immune to multipath and clutter. As such, two-dimensional laser range-finders,
have been utilized to detect people in a number of different ways. Often, people
standing near the sensor are detected by searching for the double-minima pattern
of a person’s legs. More recently, a few researchers have proposed additional fea-
tures for person detection using ladars [Premebida et al. 2009][Arras et al. 2007].
However, due to the difficulty in reaching acceptable false-negative rates, it is more
common to pair ladars with traditional camera approaches such as in [Bellotto and
Hu 2007][Scheutz et al. 2004][Premebida et al. 2009]. Although traditionally less
common, three-dimensional ladars are also commercially available [Mesa Imaging
], including in video game systems [Microsoft ]. Specifically, the Microsoft Kinect
sensor for XBox 360 has recently lead to an explosion of activity in both the re-
search [Wilson 2010][Suma ] and amateur/hacker/artist communities [OpenKinect
][et Pierre Schneider ]. The 3D ladar in the Kinect has been used to detect, count,
localize, and track people in typical living-room scenarios in real time with re-
sults good enough for real-time gaming. As far as one can tell, however, no exact
numbers have been reported regarding the precision/accuracy of this sensor. In
addition, it has not yet been disclosed exactly how this system extracts the 4 lower
STPs, although a detailed paper has been published describing how the same team
solves another human-sensing problem, namely that of pose recognition [Shotton
et al. ]. Anecdotal results with this sensor are quite impressive, but further research
is needed to better characterize its limitations. At the moment, it is not clear how
these sensors would fare outside the ultra-cooperative scenario that constitutes the
controlling of video games, or even in the presence of a cluttered background or
interference from sunlight.

In theory, any human-sensing algorithm that is designed for stereo imaging should
also work with a 3D range-finder (of any type), hence an advantage of these sensors
is that they may potentially leverage the large body of research literature on that
subject. As such, it is likely that future radar/sonar systems will follow in Kinect’s
lidar’s footsteps to provide robust body-part detection, even in through-the-wall
scenarios.

— Doppler-Shift Sensors:

classification: active, uninstrumented, ND=0.
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capabilities: presence, counting, location, tracking, identification; but for moving ob-
jects, only.

Doppler-shift sensors operate on the principle that waves reflected from a moving
object will suffer a frequency shift that is related to the radial component of the
object’s velocity (i.e. the component toward or away from the sensor’s transducer).
The simplest Doppler-shift sensors are scalar and often serve as motion sensors,
similar to PIRs. Where these differ from PIRs is that Doppler-shift sensors can
also provide speed measurements.

Scalar Doppler sensors have found much use in human gait identification. This is
often called by the name “micro Doppler”, as it relies on the lower-amplitude signals
that make up a person’s Doppler signature. Significant work has been done to
characterize the micro Doppler signature of human gait. For instance, Geisheimer
et al. have used high resolution motion capture data to simulate micro Doppler
signatures [Geisheimer et al. 2002]. Their simulation shows the contributions of
different body parts to the Doppler signature. This closely matches the results
found by Gürbüz et al., in their experiments with Doppler radars [Gürbüz et al.
2007]. One-dimensional Doppler radars have also been shown to detect stationary
people from the motion of their breathing lungs. In [Falconer et al. 2000], for
instance, Falconer et al. accomplish this by performing simple statistical analysis
on the received Doppler signal: if the kurtosis of the measured samples resembles
that of an exponential distribution, then a person is detected. Likewise, heartbeats
have also been detected with Doppler radars. In [Zhou et al. 2006], Zhou et al. use a
model of the heartbeat signal to devise a likelihood ratio test that can differentiate
between scenes with 0 people, 1 person, and more than one. Their system is
also able to, under special situations, obtain a reading of the person’s heartbeat
similar to an electrocardiogram. This could, in the future, prove extremely useful
in medium-distance medical applications.

Of course, using similar principles as their radar siblings, micro Doppler sonars
have also been developed. Kalgaonkar and Raj explore a low-cost acoustic Doppler
sonar for gait-based person identification in [Kalgaonkar and Raj 2007]. In their sys-
tem, the spectral signatures of individual walkers are learned and used to uniquely
identify them using vectors composed of Fourier spectrum slices. A Bayesian clas-
sifier is used to identify the individuals. For the laboratory scenario described in
the paper, 30 subjects are identified correctly 90% of the time. Similar results are
reported in [Zhang and Andreou 2008]. Note, however, that these tests were con-
ducted only for a single walker at a time, moving directly towards or away from
the sensor; other motion patterns may not be as easily classifiable. In addition, the
subjects’ clothing and gait type were consistent across testing and training, which
were conducted in a single session in a well-controlled laboratory environment. In
light of these concerns, the authors suggest that their system might be best suited
in conjunction with existing vision-based solutions. The prime limitation of scalar
Doppler sensors, however, is that if multiple people are walking with similar speeds
their Doppler signatures will interfere with one another. For this reason, the use
of scalar sensors is more fit for applications that require solely person detection,
such as search and rescue operations or border patrol, rather than counting or
identification.
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Clearly, for the purposes of localization and identification Doppler sensors can,
like the ranging sensors of the previous section, make use of scanning and/or tri-
angulation. Lin and Ling have reported on Doppler radars that localize multiple
moving targets with a narrowband radar using only three antennas, connected to
a total of four receivers [Lin and Ling 2006][Lin and Ling 2007]. From the phase
difference of the received signals, the authors are able to extract the bearing, ele-
vation, and range, thus localizing moving objects in 3 dimensions. Their solution,
however, can only localize multiple people if they are moving at sufficiently distinct
speeds — or their Doppler signatures will interfere.

More commonly than the narrowband approaches mentioned above, UWB Doppler
radars have been especially favored in the research community for their excellent
spatial resolution, the ability to pass through numerous obstacles, and relative im-
munity to multipath interference [Yarovoy et al. 2006]. A number of commercial
solutions for uninstrumented person localization and even through-the-wall (TTW)
imaging are based on UWB Doppler signals [Cambridge Consultants ][Time Domain
b][Camero Tech ]. Camero Tech’s Xaver 800 radar, for instance, is capable of TTW
detection and localization of moving objects (as close as 20cm apart) in 3D.

Although the current results with Doppler radars are extremely promising, there
are some clear omissions. For instance, authors do not adequately report on their
systems’ precision / accuracy (i.e. using established, quantitative metrics). Instead,
they are mainly interested in simply demonstrating the feasibility of person detec-
tion and localization as a proof-of-concept. As a result there is little information
regarding of the accuracy of the localization estimates obtained with these systems,
nor on the maximum proximity between two targets that can be disambiguated.
From a coarse analysis of the published plots, it is clear that noise is still a primary
issue with both ranging and Doppler sensors. This needs to be resolved before
use in real-world indoor environments, especially as the number of people in the
environment increases.

— Shape-detecting Networks:

classification: active, uninstrumented, ND between 4 and 6.

capabilities: presence, counting, location, and tracking.

We classify as “shape-detecting networks” (SDNs) any sensor network that ex-
tract a person’s shape by placing multiple highly-directed scalar sensors in a room.
These include tomographic sensor networks, networked range-finders, and net-
worked cameras.

Tomography has long been used for imaging the internals of the human body in
medical applications. More recently, however, RF tomography has emerged as an
area of active research into people detection, counting, localization, and tracking
[Wicks et al. 2005][Coetzee et al. 2006]. In the latter work, Coetzee et al. demon-
strate the use of narrow band radars for tomographic imaging, demonstrating a res-
olution of 15.8cm with their experiments. More importantly, they derive equations
governing the resolution limits of narrowband tomography, and therefore paving the
way for future improvements. In [Wilson and Patwari 2009], Wilson and Patwari
have shown that tomography can be performed using commodity radio hardware
with no modifications. They place a network of radios around the perimeter of
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the area of interest, and detect objects within the area by the attenuation of the
messages transmitted between each pair of nodes.

An SDN can also be constructed using networked scalar ranging devices or even
PIRs. For instance, Xiao et al. have investigated a network of 8 ultrasonic range-
finders [Xiao et al. 2006] in a toy scenario with remote-controlled cars in place of
people. Meanwhile, Shankar et al. construct an SDN using spherical sensor nodes
with multiple PIR sensors pointed radially away from the sphere’s surface [Shankar
et al. 2006]. This allows the thermal signal’s bearing to be estimated from the
direction of the PIR sensor that detected them. Using several of these multi-PIR
sensor nodes placed on walls, the authors show it is possible to detect and localize
a moving person. Although both this PIR-based solution and Xiao’s ultrasonic one
have merit as an innovative use of the sensors hardware, neither team reports on
the accuracy/precision of their respective systems in a quantitative way.

Finally, camera networks have also been used to produce tomographic-like cross-
sections of the environment, to count, localize [Yang et al. 2003], and track [Ercan
et al. 2007] multiple people. In those papers, cameras are placed on the perimeter of
an environment, and each image is reduced to a single horizontal scan line containing
binary representation of whether a person is believed to be present at that pixel or
not. Then, by projecting those scan lines into the environment, the intersections
of the binary 1s from multiple cameras define each person’s shape. (For a more
in-depth discussion of cameras, see Section 4.1.4.)

With a high enough network density, these approaches can potentially achieve
a good level of spatial resolution — albeit requiring a considerable investment in
infrastructure and setup. In addition, all shape-detecting networks that observe
people from the side (rather than the top) have experience problems with occlusions
and phantom detections. The latter occur whenever two or more people create
shadow zones, leading to ambiguities in the person-detector. Of all the reviewed
approaches, only the camera-based ones attempt to resolve this issue, albeit using
heuristics. Together, all of these constraints limit the feasibility of deployments of
shape-detecting network systems on a large scale.

4.1.4 Cameras, Other Imagers.

classification: passive or active (e.g. night-vision cameras with active infra-red illumi-
nation), uninstrumented, ND=0.

capabilities: detects presence, count, locations, tracks and identities.

Compared to other sensors, cameras are relatively affordable, offer high spatial
resolution, and provide a multiple dimensions of information regarding objects in
a scene, including size, shape, color, texture, and so on. Perhaps for this reason,
the field of computer vision has traditionally been a hotbed for human-sensing
research. However, while this high dimensionality on the one hand provides plentiful
information to disambiguate people from the environment and each other, on the
other hand it also makes camera information much harder to parse than signals from
most other modalities. As such, cameras are often suited for performance-driven
scenarios, where computational complexity is less of a constraint.

In stark contrast to other modalities, research in computer vision takes place
in a very modular manner: researchers study techniques for segmentation, back-
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ground subtraction, tracking, biometric identification, etc., as separate research
topics rather than as a holistic system. As a result, the discussion in this section
reflects this modularization. Below, we start with a subsection on three lower STPs.

— Presence, counting, localization: The vast majority of person-detection ap-
proaches currently deployed (typically for security scenarios) rely on background
subtraction. Examples of such systems includes [Snidaro et al. 2005][Shu et al.
2005]. Under the assumption that a background scene is either static or slowly
changing, the main advantage of background subtraction is that it allows quick
detection of objects of interest. Although numerous background subtraction meth-
ods have been proposed, such as [Barnich and Van Droogenbroeck 2009], [Li et al.
2003], and [Javed et al. 2002], in scenarios where the background varies these meth-
ods tend to fail or adapt much too slowly. For instance, in office or meeting-room
situations, background objects such as chairs are moved quite frequently, leading
to false positives.

Other approaches may instead employ object segmentation or pattern match-
ing. Object segmentation is the extraction of the person’s shape from the image
directly, without requiring a background subtraction preprocessing step. Lately,
there has been increased activity in object segmentation using graph-cuts, such as
proposed in Rother et al.’s GrabCut algorithm [Rother et al. 2004]. Rother’s work
can achieve to an impressive segmentation quality, albeit requiring some user in-
teraction. Meanwhile, pattern matching approaches range from simply convolving
the input image with sample images of the object to be detected, to more complex
approaches where this comparison is done in other feature spaces (e.g. SIFT [Lowe
2004], HoG [Dalal and Triggs 2005]). Pattern matching typically depends on learn-
ing an object’s typical appearance from large image databases. In an early example,
this was done using PCA to extract so-called “eigenfaces”, of which every face is
a linear combination [Turk and Pentland 1991]. Other common pattern matching
methods also work by learning a classifier from an image database, but they first
apply one of a variety of feature detectors to the images. This is the approach
taken by Viola and Jones in their famous paper on face recognition [Viola and
Jones 2002]. Their method uses Haar-like features and a cascade of classifiers that
are constructed using the AdaBoost algorithm. This type of approach is followed
by numerous other researchers: for instance, Dalai and Triggs have proposed fea-
tures known as histograms of oriented gradients, and used support vector machines
to demonstrate their usefulness for human-body detection [Dalal and Triggs 2005].
An interesting take on this concept is found in a paper by Mikolajczyk et al., who
use SIFT-inspired features in their classifier to detect different body parts (face,
shoulders, legs), then model people as an assembly of the detected parts [Mikola-
jczyk et al. ]. This allows them to detect people even in close-up views or in the
presence of occlusion.

Sometimes, to aid in person detection, it can be advantageous to explore alterna-
tive imaging hardware. A common technique is to use depth information from two
or more cameras as an additional cue to differentiate people from the background
scenery. This is in the same spirit as what is done in SDNs (Section 4.1.3), but used
for depth perception rather than the imaging of cross-sections. This is done, for
instance, in [Harville and Li 2004] (which employs simple template-matching on the
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depth images for use in a person-following robot) and in [Ess et al. 2009] for pedes-
trian detection from moving vehicles. More interestingly, Bertozzi et al. describe a
person-detection system that employs a stereo pair of thermal imagers in [Bertozzi
et al. 2007]. Thermal imagers are able to differentiate people from background ob-
jects through their temperature. As such, they have an enormous potential for use
in people sensing systems. Although commercially available for some time [FLIR
], these sensors have traditionally been too expensive to allow for widespread use,
with even a 32×31-element array costing over a thousand dollars [Heimann Sensors
]. However, given recent advances in microbolometer technology and the impending
expiration of key patents, there may be a surge in thermal-based human detection.
P. Hobbs from IBM has successfully demonstrated a 96-pixel thermal imager tech-
nology that is orders of magnitude cheaper to manufacture than previous hardware
[Hobbs 2001]. Even low-resolution sensors such as that one have been shown to
successfully detect, count and localize people from top-view cameras in [Stogdale
et al. 2003].

Of course, as is the case with the Doppler-shift sensors of the previous section,
a simple and efficient method to detect people with cameras is to leverage motion
information. In computer vision, this translates to either frame-differencing (i.e.
subtracting consecutive frames pixelwise) or optical flow (i.e. measuring the motion
gradient of each pixel over a number of frames). Some advantages of using motion
include low processing requirements (in the case of frame-differencing) and an im-
munity to long-lived misdetections when compared to background subtraction or
pattern matching approaches. For instance, a person-localization wireless camera
network that operates on frame-differencing has been demonstrated by Teixeira et
al. to execute in real-time on low-end hardware through the use of a density esti-
mation technique called averaged shifted histograms [Teixeira and Savvides 2008].
Furthermore, a growing body of research is being dedicated to “smart cameras” that
extract motion information at the hardware level [Lichtsteiner et al. 2004][Licht-
steiner et al. 2008][Fu and Culurciello 2008], making motion an evermore attractive
feature for fast, low-power scene understanding. The main disadvantage of motion-
based imaging, however, is that people “disappear” when they stop moving, requir-
ing further processing in higher-level layers.

— Tracking: Where cameras and imaging sensors are farthest ahead from other
uninstrumented modalities is in tracking and identification. This is not because
the tracking algorithms themselves are fundamentally different from those in other
modalities — they are not —, but rather due to the large breadth of informa-
tion that cameras can capture to solve the correspondence problem. This includes
height, width, shape, colors, speed, texture, and several specialized image features
such as SIFT and HoG. Like other sensing modalities, most camera-based trackers
operate on a Bayesian principle of using transition and emission probabilities to cal-
culate the a posteriori probabilities of all plausible tracks. Classical approaches to
this include multiple hypotheses tracking [Reid 1979] and joint-probabilistic data as-
sociation [Bar-Shalom and Tse 1975], while more recently Monte-Carlo approaches
have been favored (i.e. particle filtering) [Isard and Blake 1998]. The core differ-
ences between most trackers in computer vision is often found in smaller details,
though, such as the specific appearance models that they employ and the different
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methods with which they handle the combinatorial explosion of the track space.
Even so, obtaining high-accuracy tracks in crowded scenarios is still an open re-
search problem, especially in the presence of clutter and occlusions. For further
discussion of camera-based tracking see, for instance, [Enzweiler and Gavrila 2008]
or [Yilmaz et al. 2006].

— Identification: Cameras have been used to identify people using both face- and
gait-recognition. Although 20 years old now, one of the most widely used ap-
proaches is Turk and Pentland’s eigenfaces-based method [Turk and Pentland 1991].
In their 1991 paper, the authors show it is possible to identify people with the vec-
tor coefficients of the person’s face when represented in the space spanned by the
eigenvector basis extracted by PCA. This is an example of a holistic approach (i.e.
searches for entire faces) and thus is typically not robust to occlusions or unex-
pected variations in facial expressions. Depending on the number of same-person
images in the training set, and on the similarity between the training and testing
sets, PCA-based methods have been shown to achieve a precision of 99% [Wiskott
et al. 1997]. However, this number falls dramatically as people turn their heads,
change facial expressions, or when the lighting varies. In addition, face recognition
typically fails on dark-skinned subjects, although this is more due to a limitation of
current camera technology (i.e. low dynamic range) than of the algorithms them-
selves.

Some have also studied the case where only a single image is available per person.
For instance, one option is to consider a face as a group of fiducial points (eyes, nose,
mouth, etc.), as done by Wiskott et al. [Wiskott et al. 1997]. Their approach, elastic
bunch graph mapping (EBGM), consists of building a novel graph-like structure
(called a bunch graph) where each edge corresponds to a fiducial point. Each
vertex of the graph contains a “bunch” composed of Gabor wavelet coefficients of
possible states of the fiducial point. For example the states of the “eye” node may
be “open”, “closed”, “male”, “female”, and so on. People are, then, recognized
by using a graph similarity measure. Despite the high complexity of this and
other single-training-image approaches, the reported precision values vary widely
(between 9% to 98%), with an average of 84% for non-rotated images and 39% for
rotated. Note that, as opposed to the person-identification results given for other
sensing modalities, these numbers come from datasets consisting of hundreds of
people, and so the recognition rates must invariably suffer. More information on
face-recognition approaches can be found in [Tan et al. 2006].

Another option for person-identification is gait-recognition. While face recogni-
tion approaches to person identification saw their first spike in activity during the
80s, gait recognition only started to attract such levels of attention about a decade
later. Most gait recognition methods are strongly dependent on the person’s exact
silhouette, and fail when people wear different clothing, carry silhouette-altering
objects such as backpacks, or when the environment is highly cluttered (due to
increased segmentation errors). One of the simplest approaches, discussed in [Kale
et al. 2003], is to compare each silhouette’s y-histogram to a database using time
series correlation methods such as dynamic time warping. In [Wang et al. 2003],
each person’s silhouette was “unwrapped” into a 1-dimensional array which is then
matched against a database using the largest PCA components. They report an
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precision of 70.42% across different views of the same person, and as low as 34.33%
for different walking surfaces (grass vs. concrete). These numbers fall dramatically
to 14.29% when all three tested conditions are varied (view angles, shoe types, and
surface types). In a survey by Sarkar et al., the highest values among all surveyed
gait-recognition methods were found to be 99%, 36%, and 23% accurate respec-
tively for the same three testing conditions as before [Sarkar et al. 2005]. Slightly
better rates of 93%, 88% and 33% were more recently obtained by [Tao et al. 2007]
using averaged gait energy images and linear discriminant analysis along with a
novel preprocessing method (general tensor discriminant analysis) for dimension-
ality reduction. From all these numbers, given given the large imprecision of even
the best-performing methods, it is clear that gait-based person identification is not
yet reliable enough to be used by itself.

All in all, given enough processing power computer vision is an uninstrumented
modality that is unmatched both in terms of localization/tracking accuracy and de-
tection/counting/identification precision. In the near future, it is possible that the
computional complexity issue will be side-stepped either by offloading much of the
computation to the cloud or by focusing on methods that split the computational
load between a resource-hungry offline learning phase and a much more lightweight
online execution phase.

4.2 Instrumented, Single-Modality Approaches

Differently from the uninstrumented methods of the previous section, instrumented
approaches have the unique advantage that they can leverage wearable devices that
openly announce their presence. The result is that these approaches can attain near-
perfect person detection and counting — and since in their announcement they can
also broadcast a unique identifier, they also achieve near-perfect identification and
tracking. Thus, the greatest research problem in the category instrumented people-
sensors lies in the 3rd STP: that is, localization.

4.2.1 Device-to-Device Ranging.

classification: active, instrumented, ND=2.

capabilities: detects presence, count, locations, tracks and identities.

For high-accuracy localization, it is possible to improve upon the signaling prop-
erties of range-finders reviewed earlier in this paper by taking range measurements
between devices on the people and devices on the external infrastructure. This
device-to-device approach to ranging, which emerged from robot and sensor node
localization, has, as of late, been increasingly applied for human-sensing through
the use of mobile phones. The most known example in this class is, of course, the
global positioning system (GPS). In GPS, satellites belonging to a large support-
ing infrastructure transmit beacon packets carrying precise timestamps as well as
their location at that time. Distances are, then, calculated from the propagation
time of the radio packet (which, at GPS-like spatial scales is non-negligible) and
the speed of light. This is known as the time of arrival (TOA) method. However,
since the aging GPS satellites transmit their beacon in 30s intervals, it takes a
receiver several minutes to obtain enough information to self-localize from a cold
boot. Nowadays this is alleviated using a number of techniques, such as almanac
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memorization and AGPS (assisted GPS), which can speed up a first-order location
estimate considerably. Still, due to a number of sources of noise in the internal
clocks and the signal propagation time, these location estimates are limited to an
accuracy of around 10m — and often much worse. What is more, GPS does not
function in most indoor environments, as the beacons don’t generally propagate
through walls.

In light of these shortcomings, a number of alternative approaches to localization
have been proposed to achieve centimeter-scale accuracy in indoor environments.
These approaches may, like GPS, leverage the time of arrival of the signal, or other
properties such as time difference of arrival (TDOA) [Priyantha et al. 2000][Sav-
vides et al. 2001][Harter et al. 2002], signal strength (SS) [Ni et al. 2004][Krumm
et al. 2002], and angle of arrival (AOA) [Nasipuri and Li 2002][Rong and Sichi-
tiu 2006]. Signal strength approaches such as RFID are typically highly prone to
noise from interference and the sensitivity patterns of anisotropic antennas [Lym-
beropoulos et al. 2006]. The same can be said of AOA approaches. These must
also handle antenna-related distortions which lead to large positional errors (as
the target distance increases) that must be addressed with additional processing,
such as the maximum likelihood algorithm in [Rappaport et al. 1996]. For these
reasons, TOA and TDOA are the device-to-device ranging methods that have seen
the most success, being limited mainly by clock synchronization errors. For a full
treatment of the different localization methods see, for instance, [Mao et al. 2007]
or [Srinivasan and Wu 2007].

In all, the localization accuracy of TOA and TDOA are relatively high. Even
early efforts have reported localization errors under 20cm for a person traveling at
1m/s [Smith et al. 2004], and less than 9cm when using a very high network density
(100 nodes for 2 rooms) [Harter et al. 2002]. Similarly to the uninstrumented case,
UWB signaling can also be leveraged in instrumented scenarios to further improve
spatial resolution and immunity to multipath. Current systems using UWB radios
provide centimeter-scale accuracy even in cluttered indoor environments [Alsindi
et al. 2009]. For a detailed analysis of the fundamental limits of UWB localization
with a theoretical focus see [Gezici et al. 2005], and for an experimental focus refer
to [Alsindi et al. 2009].

Following the example of other range-finders, device-to-device ranging may also
make use of Doppler-shift effects. This has been investigated by Kusy et al. for mov-
ing targets [Kusy et al. 2007], and subsequently extended by Chang et al. to localize
stationary targets by using spinning sensors [Chang et al. 2008]. These solutions,
however, offer a spatial accuracy that is relatively poor for many performance-driven
scenarios, in the order of one meter.

Nonetheless, device-to-device ranging is an incredibly promising sensor configura-
tion for localization in human-sensing applications. Their main disadvantage lies is
the network density: they require a complex infrastructure of beacon nodes, which
can be expensive and cumbersome to install and manage. This would seem to make
them suitable solely for performance-driven scenarios, but in fact deployments can
be easily adjustable to resource-constrained applications by simply reducing the
infrastructure. Unfortunately, despite all its promise reported results are often ob-
tained in the ideal conditions of a lab setup, where devices are placed on special
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supports that greatly reduce multipath and do not absorb RF signals as human
bodies do. An analysis that takes these effects into account is notably missing from
the existing literature. Finally, commercial solutions are already available for track-
ing people or packages in large stores, warehouses, office buildings, and hospitals
[Time Domain a], [UbiSense ].

4.2.2 Environment Recognition.

classification: passive, instrumented, ND does not apply since this solution is area-
independent.

capabilities: mainly self-localization and self-tracking; to inform external entities of
the other spatio-temporal properties, a radio or other communication
device is required.

As described in Section 3.1, it is possible to take advantage of both natural and
artificial properties of the external environment in order to localize a person. This
is the basic premise of environment-recognition sensors, which listen to signals from
the environment and compare them to pre-acquired signatures in a local database.
The main challenge with this method is handling changes in the environment, such
as different lighting conditions or radio fingerprint variations. The most common
example of environment-sensing is radio signal strength fingerprinting, which has
been widely employed in mobile phones for the past few years. This method stems
from the work by Castro et al. in which a database of WiFi signal strength sig-
natures was used to infer the room in which a WiFi client was placed [Castro
et al. 2001]. Since then, other researchers have used improved statistical models to
lower the mean localization error from the room-level to under 1.5m [Ladd et al.
2005][Roos et al. 2002], and even to the sub-meter range [Youssef and Agrawala
2008]. Of course, the same techniques can be applied to other types of radio sig-
nals such as GSM (Global System for Mobile Communications). In [Otsason et al.
2005][Varshavsky et al. 2006] this is shown to yield an accuracy of, at best, a few
meters. To further improve the localization error, Youssef and Agrawala used sig-
nal modeling techniques to account for not only for small-scale spatial variations
in the received signal strength, but also temporal variations [Youssef and Agrawala
2008]. They report average distance errors of under 60cm in scenarios with a high
concentration of WiFi base-stations and where the offline database construction
process was performed for a dense set of locations. It is unclear, however, whether
their system can achieve such low errors for targets that move, since multiple sam-
ples are required to filter out temporal signal strength variations. Furthermore, the
standard deviation of the errors in all of these systems is relatively large, typically
near the 1m range. As a consequence, current RF fingerprinting methods are, in
reality, limited to a relatively coarse localization accuracy.

Although less commonly used for human localization, other environment recog-
nition methods that have been considered in the literature include camera-based
[Se et al. 2005][Schindler et al. 2007], ladar-based [Zlot and Bosse 2009], and
microphone-based [Korpipää et al. 2003] approaches. The former two types are
often used for vehicle localization, but the same systems should be directly applica-
ble to personal localization. In a car localization application, Schindler et al. report
that over 40% of their location estimates had errors greater than 10m [Schindler
et al. 2007]. Perhaps due to these large errors, in indoor environments most systems
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of this kind are geared toward room-recognition applications rather than accurate
localization. Pronobis et al. have recently built a large database of indoor images
in an automated fashion using three different robots, two different buildings, and
three lighting conditions to serve as a benchmark for other researchers in the field
[Pronobis et al. 2009]. They also propose a system to be used as a baseline in that
benchmark, which is able to correctly recognize different rooms at rates between
74.5% and 87.3% in the most challenging case (where different lighting is present
during training and evaluation).

In sum, the accuracy of any environment recognition method is highly dependent
on the quality of the database being employed. For now, databases are still too
limited in coverage to provide a localization accuracy better than a few meters. It
is very likely, however, that with more detailed databases (containing redundant
exemplars in varying environmental conditions, for instance) these approaches will
soon achieve a localization accuracy in the order of 1 meter — or even sub-meter
depending on complexity of the environment.

4.2.3 Inertial Sensors.

classification: passive, instrumented, ND=0.

capabilities: mainly self-localization (in relative coordinates) and self-tracking; to in-
form external entities of these or other spatio-temporal properties, a
radio or other communication device is required.

The process of inferring the path of a moving body from its inertial measurements
(such as speed or acceleration) is known is dead-reckoning. The sensors that are
most widely used for this purpose are inertial measurement units (IMUs) containing
accelerometers (acceleration sensors), gyroscopes (angular velocity sensors), and/or
magnetometers (magnetic field sensors, used as a compass). The premise of dead-
reckoning is that if a person’s location at time t is known, then their location at
t+ δt can be found by simply integrating their known velocity, or twice-integrating
their acceleration, during the time interval δt. However, a number of sources of
error accumulate during this integration, causing the location estimate to quickly
diverge, often within a few seconds. The most prominent sources of error in dead-
reckoning are calibration errors, quantization errors, and the effect of gravity on
the accelerometer, the effect of external magnetic fields and metals on the compass.
As such, the novelty in any dead-reckoning method lies in the different ways to
mitigate these various factors.

One often-employed solution against this divergence is to place the IMU on one
of the person’s shoes, rather than on the body, which allows for so-called zero-
velocity updates (ZUPTs) [Dorota et al. 2002]: whenever the IMU detects that
the shoe is touching the ground, it is safe to assume that the true velocity and
acceleration of that foot is zero. Therefore, if at that moment the velocity inference
is set to 0m/s, then the errors accumulated from the integration of the acceleration
component will be effectively discarded. Using this method, Ojeda and Borenstein
have been able to infer a person’s path in 3 dimensions with errors as little as
2% of the distance traveled [Ojeda and Borenstein 2007]. I.e., for a distance of
100m, the localization error is expected to be as little as 2m. Quite impressively,
Foxlin has shown with his NavShoe system that errors of 0.2% are achievable by
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entering the ZUPT information as pseudo-measurements in an extended Kalman
filter (EKF), rather than simply setting the velocity to zero [Foxlin 2005]. Another
approach is to use the accelerometer as a step counter (pedometer) and to calculate
the length of the person’s step on the fly using an empirically-obtained equation
proposed by Weinberg [Weinberg 2002]. This, he writes, has been shown to lead to
distance errors of 8% of the distance walked. Interestingly enough, in a recent paper
Jimenez et al. have compared ZUPT against Weinberg’s equation, with perhaps
unexpected results: ZUPT errors were found to be in the range of 0.62%–1.15%,
while a much lower error of 0.30%–0.78% was obtained for Weinberg [Jiménez et al.
2009]. Either way, the fact is that dead-reckoning with shoe-mounted IMUs is
quickly becoming a viable method for motion path inference. For sensors mounted
in other locations (such as mobile phones inside a person’s pocket), however, the
dead-reckoning problem is still largely unsolved, on account of integration errors.
The biggest breakthrough in the fight against these errors will come in the form
of more accurate inertial sensors, especially if a gravity-insensitive accelerometer is
ever developed. In our opinion, however, it is highly likely that truly divergence-
free dead-reckoning cannot be achieved without intermittently sampling an absolute
frame-of-reference such as a GPS or camera (see Section 4.3.3).

4.3 Sensor Fusion Approaches

Sensor fusion approaches build upon the use of multiple sensors or sensing modal-
ities in an attempt to combine their advantages while cancelling out their disad-
vantages as much as possible. In this section we review a small number of sensor
fusion examples to illustrate some of the benefits of multi-modality sensing. The
capabilities of each are summarized in Table III. Note that both in the table and
in the paragraphs below the capabilities that we report are an account of the prop-
erties of the specific sensor fusion systems cited here — that is, they should not be
taken as an assessment of the combination of those sensing modalities in general,
only of the specific instances here analysed.

4.3.1 Cameras & Microphones.

classification: passive, uninstrumented, ND=0.

capabilities: detects presence, count, locations, and tracks.

The idea of sensor fusion comes naturally in some applications. Consider, for
example, a fully-automated video conference system where it is desired that anyone
currently speaking be placed within the field-of-view of the camera by actuating
pan-tilt-zoom motors. In such a case, it is only natural to conclude that the solution
must involve the use of both microphone arrays (for sound source localization)
and cameras (for the actual filming). And upon further investigation, it becomes
clear that the speakers localized by the microphone arrays can be more precisely
detected by fusing face-recognition information from the camera. For this, Shen
and Rui propose the use of a two-level particle filter where the first level computes
separate track hypotheses for each face seen by the camera and for each speaker
located with the microphones, while the second level joins the hypotheses from all
modalities [Chen and Rui 2004]. Although they do not provide numerical results,
they report that speakers are tracked more precisely/accurately than by sound
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alone, and that, in some instances, visual ambiguities (when a person moves too
fast, for instance) are resolved from the audio fusion. Gatica-Perez et al., however,
do present results for their solution. They show that their MCMC PF approach
leads to an improvement of close to 0.5 points to the tracker’s F-measure (average
of precision and recall) in complex scenarios [Gatica-Perez et al. 2007].

Although the fusion vision with audio has been shown to improve localization and
tracking of a speaking person, in our view the greatest asset of this fusion modality
is that it introduces the concept of “attention” into the tracking process. This can
be useful not only in applications like controlling pan-tilt-zoom cameras in video
conferencing, but also in video compression (by over-compressing the areas that do
not deserve attention) and track initiation in environments where there is complex
motion in the background. However, these topics remain largely unexplored in the
context of audio-visual fusion sensors.

4.3.2 Camera & Laser Range-Finder.

classification: active, uninstrumented, ND=0.

capabilities: detects presence, count, locations, and tracks.

In the same vein as the speaker localization approach described above, where
face detection results from a camera were enhanced through an additional sensing
modality (microphones, in that case), several researchers have explored people-
sensing systems that fuse face detection with laser range finders [Bellotto and Hu
2007][Brooks and Williams 2003][Kleinehagenbrock et al. 2002]. By coupling face
detection algorithms (using vision) with leg detection methods (using ladars), these
authors are able to localize people around their robots even when their faces are
not visible. Belloto and Hu’s system uses a simple flowchart to fuse the two sen-
sors, while Brooks and Williams use a more standard (and probably more robust)
Kalman filter. Sadly, neither group provides quantitative metrics for the detection
precision nor localization accuracy.

As opposed to most other fusion modalities reviewed here, the combination of a
camera with a ladar is commercially available in a single, self-contained package:
the Microsoft Kinect. As described in Section 4.1.3, the Kinect’s ladar alone is
able to quickly and robustly detect people’s locations and poses in a typical living-
room scenario. With the addition of the camera, then, this sensor has been used
to identify each detected person in order to remember their preferences in video
games. With the widespread availability of such hardware, there has been a boom of
activity in this modality in the past year, and further algorithmic advances should
be expected.

4.3.3 Dead-Reckoning & Device-to-Device Ranging.

classification: active, instrumented, ND does not apply since this solution is area-
independent.

capabilities: self-localization and self-tracking.

As described in Section 4.2.3, dead-reckoning is by itself prone to cumulative
errors which can quickly become unmanageable. An common solution to this issue
is to periodically correct the person’s absolute location using a separate sensor
such as a GPS [Judd 1997][Beauregard and Haas 2006]. This is typically done
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by incorporating both the inertial measurements and the absolute locations from
the GPS into a single filter, usually a Kalman or particle filter. This approach
is followed, for instance, by Klingbeil et al. for indoor localization. The novelty
in their case is that, in place of GPS measurements, they utilize a supporting
network of infrastructure nodes that is able to coarsely localize a person using
signal-strength-based binary proximity measurements [Klingbeil and Wark 2008].
Using a particle filter, they report a mean error rate of 2m in their experiments
where the infrastructure nodes were placed 5 to 10m apart. With the addition
of knowledge about the building’s floorplan (which allows them to prune particles
where people move through walls), they show that the mean error can be reduced
to 1.2m. Clearly, further accuracy can be directly obtained by using the full signal
strength measurements rather than thresholding them, or by utilizing a TOA or
TDOA approach instead.

As inertial sensors and assortments of radios become standard features in mobile
phones, this modality will grow ever more popular. The missing piece for more
precise localization is a widely available network of infrastructure beacons, akin to
GPS satellites, yet higher-resolution and wall-penetrating.

4.3.4 Dead Reckoning & Environment Recognition with Wearable Camera.

classification: passive, instrumented, ND does not apply since this solution is area-
independent.

capabilities: self-localization and self-tracking.

Yet another variation on error correction for dead-reckoning is given in [Kourogi
and Kurata 2003]. In that work, Kourogi and Kurata describe a system comprised
of a wearable inertial measurement unit and a head-mounted camera. The intuition
is that the dead-reckoning errors can be corrected whenever the camera recognizes
the surrounding environment and provides an absolute localization estimate. Using
the inertial sensors alone, their system employs a number of techniques to keep the
dead-reckoning error at around 3.66% of the distance traveled. With the addition
of the camera, the authors report being able to periodically correct dead-reckoning
errors at all locations present in their image database, although they do not provide
a measure of the overall localization accuracy of their system.

In our view, environment recognition with wearable cameras is still very much
in its infancy. Save for a few toy scenarios, this modality is currently ill-suited
to provide the precise location updates that are required for the correction of in-
ertial sensing errors. However, as new image-matching techniques are developed
for ultra-large visual databases, this fusion modality has the potential to provide a
localization service that is as precise as the one enjoyed by the human brain when
it localizes itself in an environment.

4.3.5 Infrastructure Cameras & Wearable IMU.

classification: passive sensors that require active communications, instrumented, ND=2.

capabilities: detects presence, count, locations, and tracks; for instrumented people,
also identifies.

Another variation on the topic of inertial sensors plus external localization device
is given in [Teixeira et al. 2009][Teixeira et al. 2010]. In order to eschew the well-
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known cumulative errors of other approaches, the authors avoid performing dead-
reckoning altogether. That is, they do not attempt to estimate the person’s motion
path from the inertial measurements, but, rather, utilize other properties of the
inertial data. In their proposed systems, a camera network in the environment
detects and localizes people while wearable sensors are leveraged to provide IDs to
those detections. The intuition is that the acceleration measured by a wearable
accelerometer should match the acceleration of the person’s image in the video.
The challenge, then, is to find the best-matching acceleration pairs. The problem
was defined as a bipartite graph matching where one set of vertices represents the
different accelerometers in the scene, and the other set all current track hypotheses
from the video. The authors approached the edge weights of the bipartite graph in
several ways, including a custom gait-comparison metric [Teixeira et al. 2009], and
the maximum a-posteriori (MAP) likelihood of each two signals originating from
the same person [Teixeira et al. 2010]. The latter yielded the best results, with
an precision above 90% in uncrowded scenarios (i.e. scenarios where people crossed
paths with an average frequency of once every 3 seconds).

The advantage of this approach is that it mixes the precision of vision-based
human localization with the accuracy of human identification through wearable
sensors. Therefore, by piggybacking on the evolving human-sensing literature from
the Computer Vision domain, this fusion modality has the potential to yield even
higher-quality results.

4.3.6 Laser Range-Finders & ID badges (infrared and ultrasound).

classification: active, instrumented, ND=2.

capabilities: detects presence, count, locations, and tracks; for instrumented people,
also identifies.

Schulz et al. have presented a system to detect, count, localize, track, and identify
people in an office environment using 2D laser range-finders and wearable ID badges
[Schulz et al. 2003]. In their system, the laser range-finders are used to anonymously
detect and localize people in the environment, while the wearable ID badges provide
sparse identity observations as people approach ID readers in the infrastructure.
The authors propose a Rao-Blackwellized particle filter that builds tracks from
the laser measurements while simultaneously making ID inferences. Their paper
reports a success rate of 10 out of 10 experiments, where a “success” is defined as
the correct hypothesis being present within all hypotheses generated by the particle
filter. The main limitation of this approach is that people’s identities are only truly
asserted when they pass by the ID readers in the environment. In the meantime
between any two such events, their IDs are maintained through purely position-
based tracking and is, therefore, subject to the well-known error modes of trackers
when facing ambiguities. As such, the density of ID readers in the environment is
an extremely important factor for this type of system. It may be possible to lessen
the effect of this issue by incorporating ladar-detected features [Premebida et al.
2009][Arras et al. 2007] into the tracker. However, this problem can only be fully
resolved if personally-identifying features for 2D ladar signals are discovered.

4.3.7 Camera and RFID.

classification: active, instrumented, ND=0.
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ND

Uninstrumented
Motion Sensors either ◦ · · · 2
Pressure Sensors passive © ◦ ◦ ◦ · 4
EF Sensors active © ◦ ◦ ◦ 4
Vibration Sensors passive ◦ · · · · 1
Scanning Range-Finders active ◦ ◦ © ◦ · 0
Doppler-Shift Sensors active ◦ ◦ ◦ ◦ · 0
General SDNs active © ◦ ◦ ◦ 6
Camera SDNs passive © © © © 4
Cameras either © © © © ◦ 0
Thermal Imagers passive © © © ◦ · 0
Inertial Sensors passive ◦ · · · 3
Chemosensors passive · − − − − ?

Instrumented
Wearable SS Device-to-Device Rangers either © © · © © 2
Wearable AA Device-to-Device Rangers active © © ◦ © © 2
Wearable TOA/TDOA Dev.-to-Dev. Rang. active © © © © © 2
Wearable Doppler-Shift Sensors active © © ◦ © © 2
Wearable Environment Recognition passive  ©  ©  ◦  ©  © ×
Wearable Inertial Sensors passive  ©  ©  ◦  ©  © ×

© = good performance ◦ = medium performance · = low performance
− = plausible, but no detailed literature ? = unknown
 = requires communications (i.e. depends on the addition of a radio)
× = does not apply since this solution is area-independent

Table II. Summary of the capabilities of each sensing modality. The network density
(ND) is described in Section 3.2. Lower ND values are typically preferable to higher
ones. Since we did not establish the size of the sensing area, the numeral value of
the network density is meaningless by itself. The important value to note is the
difference between NDs for two competing modalities.

capabilities: for uninstrumented people: crudely detects presence and count; for in-
strumented people, detects count, locations, tracks, identities.

In order to provide a robot with the ability to follow a person in a crowded en-
vironment, Germa et al. have recently explored the fusion of cameras with RFID
sensors [Germa et al. 2010]. In that work, the authors equip a robot with a camera
and an RFID reader connected to an array of 8 antennas aimed radially at different
angles from its center, to detect the azimuth angle of different ID tags. A particle
filter is used to fuse the azimuth measurements from the antenna array with the
detections from the camera by simply rejecting all particles that do not fall within
the detected angle range. The authors, then, show that the fusion approach signif-
icantly outperforms the vision-only solution: using solely the camera, their system
is able to track an given person only 21% of the times, while with the addition
of the RFID cues this number increases to 86%. Although this is not explored in
that paper, it is possible that the array of RFID antennas can be substituted with a
more compact set of 2 antennas, through the use of smart beam-forming techniques
(such as employed in phased-array radars).

5. DISCUSSION

Table II summarizes the capabilities of all sensing modalities surveyed in this paper,
particularly emphasizing their detection performance for the 5 STPs, as well as net-
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work density. Although Table II necessarily abstracts away vital details discussed
in Sections 4.1 and 4.2, it does make a few fundamental tendencies stand out. For
one, the table clearly shows that instrumented approaches, on average, perform
better than uninstrumented ones, especially for the purpose of identity-detection.
The trade-off, of course, lies on a requirement for extraneous communication devices
(in the case of passive sensors) and a large increase in network density (in the case
of active sensors). For instance, a comparison between the best-performing instru-
mented and uninstrumented modalities shows that the former requires a network
with approximately 4 times as many sensors as the latter (ND = 2 vs. ND = 0).

The overall best modality for instrumented scenarios is TOA/TDOA
device-to-device ranging [Mao et al. 2007][Srinivasan and Wu 2007], especially
those approaches using UWB [Alsindi et al. 2009]. These are able to attain good
localization accuracy both outdoors and indoors (and are even available commer-
cially [Time Domain a]) albeit requiring the installation of a complex infrastructure.
For self-localization without the burden of additional infrastructure, GSM- [Otsa-
son et al. 2005][Varshavsky et al. 2006] and WiFi-based [Ladd et al. 2005][Roos
et al. 2002][Castro et al. 2001] environment sensing [Youssef and Agrawala 2008] is
a good compromise with an accuracy of a couple of meters, which is acceptable in
many use-cases. What is critically absent in the device-to-device ranging literature
at this time is an in-depth characterization of the effects of different real-world
factors on system performance, such as the body’s RF absorption properties given
different poses, antenna orientations, device placement locations, clothing, and so
on. Without this, the results reported in Section 4.3.3 should be interpreted with
caution.

For uninstrumented scenarios, the best modality overall is vision (i.e.
cameras and other imagers). Computer vision is far ahead from other instru-
mented modalities not only with respect to spatial-resolution and precision metrics,
but also in terms of having the most field-tested solutions. For instance, background
subtraction [Barnich and Van Droogenbroeck 2009][Li et al. 2003][Javed et al. 2002]
and motion differencing [Teixeira and Savvides 2008] are often a “good enough” so-
lution for quick-and-easy deployments. However, for reasons listed in Section 4.1.4,
these solutions have a number of disadvantages. To bypass them, the ideal person
detector should be able to discover a person given only a single frame and with
no prior knowledge about the scene. This is only attainable using more complex
pattern-matching approaches based on learned appearance models in smart fea-
ture spaces [Turk and Pentland 1991][Viola and Jones 2002][Lowe 2004][Dalal and
Triggs 2005]. These specialized feature spaces, which make use of the abundance
of personally-identifying features that are available in an image, also make cam-
eras the best uninstrumented sensors for detecting the two higher spatio-temporal
properties (i.e. tracking and identification). Although at present time these models
are still lacking in precision, it is known that pattern-matching person detection,
tracking, and identification problems are solvable, from the simple fact that our
brains are able to do so astoundingly well.

Scanning range-finders [Zetik et al. 2006][Chang et al. 2009][Chang et al. 2009]
and Doppler-shift sensors [Lin and Ling 2006][Lin and Ling 2007][Yarovoy et al.
2006] currently hold a somewhat distant second place in all of these regards. Where
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they do displace cameras is in their relatively low computational overhead (in the
case of 2D approaches), resistance to occlusions (radio-based approaches), and in-
difference to illumination. They are not, however, able to robustly detect static
people, nor can they resolve tracking ambiguities with high precision. The glaring
exception here are 3D lidars/ladars, and more specificially the MS Kinect which
has been shown to perform fast and precise human sensing [Microsoft ]. We expect
scanning range finders of all types to advance quickly in the next few years. The
availability of such a low-cost consumer-grade sensors is surely going to contribute
to a leap in the quality of human-sensing algorithms for ladars/lidars. In the case
of radars, however, there is plenty of room for innovation such as enabling radars
that use off-the-shelf radios, or developing small and low-cost hardware alternatives
that can be easily embedded into other devices.

For resource-constrained scenarios, the preferred solution is to em-
ploy simple binary sensors. These can be used as cost-effective occupancy
sensors (usually in bathrooms, corridors, etc.) that, when smartly networked, al-
low for localization and piecewise tracking as well [Aslam et al. 2003][Oh and Sastry
2005][Kim et al. 2005][Xiangqian et al. 2008]. However, due to a number of issues
with most existing binary sensors (for example, PIR cannot sense people who are
standing still; floor tiles and EF sensors are difficult to install and interpret), there
is a distinct research opportunity here to develop a true binary human-presence-
detector. The solution will likely take the form of scalar Doppler-shift sensors that
are not only used for large-scale motion [Gürbüz et al. 2007][Geisheimer et al. 2002]
but also to detect breathing and heartbeat motions when a person is otherwise
completely still [Falconer et al. 2000][Zhou et al. 2006].

5.1 Opportunity: Sensor Fusion at Massive Scales

Despite the progress, a number of classic sensing problems are not only still largely
unsolved, but also amplified when applied to the domain of human-sensing as op-
posed to rigid objects. For instance, no sensing modality or sensor fusion approach
can robustly6 perform even presence detection — the lowest-level spatio-temporal
property! In fact, the false-positive and false-negative rates of the best approaches
typically lie near the 10% mark in uncontrolled environments. Likewise, multiple-
person tracking is still a clear challenge in real-world, medium–crowd-density en-
vironments such as office buildings and airports. People are easily lost, and tracks
are often terminated or, even worse, incorrectly extended in the face of ambiguities.
Therefore, in spite of advances in the field, truly robust human-sensing is still by
and large an unrealized goal.

As discussed in Section 4.3, and as has been long advocated in the pertinent
research communities, the solution to these problems is expected to come from
the fusion of multiple sensors or sensing modalities. Still, comparing each row in
Table III with the respective modalities listed in Table II, it becomes clear that
the crop of current sensor fusion research do not leverage the full potential of
their specific sensor combinations. We believe a primary reason for this lies on the
difficulty of designing and fine-tuning current fusion systems, since the entire design
process must be performed by hand for each new problem instance.

6With less than 1% false positives, and less than 1% false negatives

ENALAB Technical Report 09-2010, Vol. 1, No. 1, September 2010.



32 · Thiago Teixeira et al.

sensor fusion approaches signaling pr
es

en
ce

co
unt

lo
ca

tio
n

tr
ac

k
id

en
tit

y

ND

Uninstrumented
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Instrumented
Dead-Reck. & Dev.-to-Dev. Ranging active  ◦  ©  © ×
Dead-Reck. & Env. Recog. w. Wear. Cam. active  ◦  ◦  © ×
Infrastructure Cameras & Wearable IMU passive © © ©  ©  © 0
Laser Range-Finders & Wearable ID Badges active © © © © © 2
Camera & RFID active ◦ ◦ ◦ ◦ © 0

© = good performance ◦ = medium performance · = low performance
 = requires communications (e.g. self-localization followed by broadcasting)
× = does not apply since this solution is area-independent

Table III. Summary of the capabilities of existing sensor fusion approaches.

More importantly, looking into a future where human-sensing networks will con-
sist of massive numbers of highly heterogeneous sensors, hand-designing a fusion
system for each problem instance will simply no longer be feasible. The number of
parameters involved will be too numerous. Due to cost considerations, new sensing
hardware will often not replace older generations in already-deployed networks —
rather, several generations of sensors will operate alongside one another. Likewise,
it is probable that the private sensor networks which are nowadays being deployed
by distinct entities will, at some point, become interconnected into a great sensor
internet. This new structure will certainly contain sensors from an assortment of
vendors, with highly varying sensing characteristics (error distributions, sampling
rates, spatial resolution, etc.). As a result, we foresee a pressing demand
for automated sensor fusion frameworks, which will estimate the parameters
of each particular instance of the human-sensing problem on-the-fly through new
unsupervised learning techniques.

Let us consider, as a possible starting-point, the sensor fusion systems surveyed
in Section 4.3. It should be clear from that discussion that a mathematical tool
that has emerged as an almost universally-accepted foundation for sensor fusion is
the particle filter (PF) [Arulampalam et al. 2002]. The main reason for this is that
PFs excel in handling complex probability distributions, such as those that may
arise in fusion scenarios, by inherently representing them within a set of “particles”.
In essence, particle filters can be summarized in the following manner: (1) At each
timestep k, the new measurement from each sensor goes through a data alignment
step. (2) A density function is computed for each sensor’s measurement, by taking
into consideration the known error characteristics of that sensor. This represents
the likelihood of the state given the measurement from that modality alone. (3)
The probability density that had been computed at time k − 1 is propagated into
time k. (4) The densities from steps 2 and 3 are fused to obtain the density for
timestep k, from which a state inference can be made.

Therefore, the designer of a PF-based sensor fusion system must currently enter
the following information into the filter: the data alignment equations from step
1, the measurement likelihoods that are used in step 2, and the state propagation
equations from step 3. All of these depend on details that concern the specific
instance of the problem, such as the specific sensors being used, the expected be-
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havior of the people in the scene, and the expected characteristics of the scene itself.
In a truly plug-and-play fusion framework, though, these would not be available a
priori. The problem that we are posing, then, is to estimate these three pieces
of information online in an unsupervised fashion.

More concretely, consider the following example scenario. A researcher is given
access to data from a large network of floor tiles, cameras, and ladars, which are
densely placed over an entire office building with often-overlapping sensing areas.
He is told that the cameras are mounted on the ceilings, pointing diagonally down,
and that the ladars are on the walls, scanning horizontally to produce a 2D slice
of the environment. But he does not know the precise sensor placement, nor does
he know the exact sensing characteristics of the different pieces of hardware, which
may have originated from different vendors. The researcher also has access to the
tracks that were locally computed by each camera and ladar — however, due to
sensing overlaps, the same person is often observed simultaneously by multiple
tracks. Given this data, can a sensor fusion framework be built to “stitch” the
tracks and floor tile observations together, so that (1) each person is described by
a single unified track across the entire building, and (2) each person’s location is
more accurately measured than with any single sensing modality?

6. CONCLUSION

As computer systems transition from people’s desks to their pockets and the world
around them, there will be an increasing demand for person-centric information.
In this paper we have surveyed the existing methods to acquire such information,
and classified them according to a taxonomy of human-sensing . By analyzing the
existing sensing modalities and sensor fusion approaches within the framework of
our taxonomy, we anticipate that future human-sensing systems will likely consist
of an amalgamation of three types of sensors:

(1) Massive numbers of low-cost binary sensors (usually motion sensors) to
provide somewhat coarse information regarding the 5 STPs. Although coarse,
this information will be appropriate for resource-constrained applications —
especially as binary-sensor fusion algorithms [Aslam et al. 2003][Oh and Sastry
2005][Kim et al. 2005][Xiangqian et al. 2008] are further improved.

(2) A relatively smaller number of cameras placed at key locations, wher-
ever it is desirable to extract people’s poses and gestures, and to obtain more
fine-grained estimates of people’s locations and tracks, including some idea of
their ID.

(3) Opportunistic use of sensors on mobile phones as they become avail-
able in an environment, gracefully degrading the quality of the provided
services for phone-less users or users with different privacy settings.

Of course, this setup will certainly suffer some modifications in a few specific sce-
narios, such as for long-distance outdoors situations where the cameras may be
replaced by ranging [Zetik et al. 2006][Chang et al. 2009][Chang et al. 2009] or
Doppler devices [Lin and Ling 2006][Lin and Ling 2007][Yarovoy et al. 2006], and
the binary motion sensors by binary seismic sensors [Audette et al. 2009][Pakho-
mov et al. 2003]. In addition, wherever high-accuracy localization and precise
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identification are the main design constraint, device-to-device ranging [Mao et al.
2007][Srinivasan and Wu 2007][Alsindi et al. 2009] will continue to be the dominant
solution in the years to come.

To further increase the sensing performance of the setup described above, we
believe some design changes will necessarily take place within the sensor hardware
itself. For one, the large number of false-positives and false-negatives in the current
crop of binary sensors could be drastically reduced through the use of scalar micro
Doppler sensors that are able to detect traits that are highly human-specific, such
as breathing [Falconer et al. 2000] and heart motions [Zhou et al. 2006]. However,
cheap micro Doppler sensors are not currently available. Similarly, the relative
difficulty in detecting and segmenting people using vision alone would be greatly
alleviated if a multi-modal camera were created containing a regular imager, a
thermal imager, and a ladar. Since these three modalities are structurally similar
(they all consist of 2D pixel arrays), the data produced by such a trimodal imager
could be easily fused through well-known methods that have been developed for
stereo imaging. This has been partly achieved by the Kinect, which fuses ladar
with a regular imager, but so far it appears that person-detection methods for this
sensor do not take advantage of the data fusion between the two modalities.

In addition, once large-scale human-sensing becomes ubiquitous, an unavoidable
topic will be that of privacy. Clearly, to make use of different services, people must
forego different levels of privacy. For instance, a taxi-calling service necessarily
requires the user to share his location. However, people do not expect to provide
their their date of birth, their picture, or a blood pressure reading in order to use
such a service. Therefore, there will be a push for new sensing solutions which
can only extract a well-defined set of properties, and which are — by design —
unable to measure anything else. There will be an increased demand for privacy-
preserving sensing hardware, as well as on new data representations that compress
the measurement space and filter out sensitive data. However, surprisingly little
research has been focusing in these directions.

The multiple facets of human-sensing will no doubt become a hotbed of innovative
research in the coming years. The great potential of this field lies in the fact that
the more research results are obtained, the greater and the more complex will the
datasets grow, thus leading to further questions to be asked — and the need for
more specialized sensors to answer them.
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