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ABSTRACT
We propose a system to identify people in a sensor net-
work. The system fuses motion information measured from
wearable accelerometer nodes with motion traces of each
person detected by a camera node. This allows people to
be uniquely identified with the IDs the accelerometer-node
that they wear, while their positions are measured using the
cameras. The system can run in real time, with high pre-
cision and recall results. A prototype implementation using
iMote2s with camera boards and wearable TI EZ430 nodes
with accelerometer sensorboards is also described.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]:
Real-time and embedded systems; I.4 [Image Processing
and Computer Vision]: Scene Analysis—Sensor fusion,
Tracking

General Terms
Measurement, Design, Experimentation

Keywords
Unique identification, Consistent labelling, Association prob-
lem

1. INTRODUCTION
A large obstacle to the deployment of assisted-living sys-

tems in multiple-person or family homes is the problem
of differentiating between people and uniquely identifying
them in order to properly attend their individual needs. For
this reason, much of the current assisted-living technology
focuses on single-person scenarios — and often break as soon
as visitors are invited into the home. Additionally, multiple-
person homes present complex privacy requirements for as-
sistive technologies, in the sense that only those who volun-
tarily choose to utilize the system people should have any
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Figure 1: Sensor nodes used in the prototype sys-
tem. Left: TI EZ430-RF2480 ZigBee node with ac-
celerometer sensorboard. Right: Intel Mote2 with
custom camera board.

private information captured and stored. Meanwhile, cam-
eras are becoming increasingly popular sensors in assistive
environments, given their long sensing range and ability to
measure distinct information modalities (such as location,
pose, motion path and ambient lighting). However, the
problem of associating detected people across multiple im-
age frames as well as robustly identifying them solely with
visual features is still a topic of much research in computer
vision.

In this paper we present a real time system that identi-
fies people in camera networks with high accuracy through
the use of wearable accelerometer nodes with known IDs
(Figure 1). We bypass the computer vision correspondence
problem by matching local motion signatures from wearable
accelerometers with those observed from infrastructure cam-
eras. This way, we are able to obtain the location of each
person using the camera detections and to estimate their
identities by matching their motion characteristics. The ad-
vantage of this approach is that it provides reliable oper-
ation at reduced cost for assistive applications. Instead of
relying on expensive video analytics to identify people, we
make use of very limited information from the cameras and
construct a unique modality pair by coupling cameras and
accelerometers through wireless links. An overview of this
process is shown in Figure 2, and more detail is provided
in Sections 3 and 4. As described in the evaluation section
(Section 5), the system runs in real time with high precision
and recall metrics. We start the paper with a discussion
regarding related work (Section 2) following by description
of the problem in Section 3.

2. RELATED WORK
Accelerometers and cameras are often combined to track

the camera motion, generally for use in robot navigation [1],
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Figure 2: To associate IDs with each detected people, we find the best match between measured body
acceleration and each person’s motion in the image plane. To obtain this motion information, tracks must
be formed from combinations of detected people in the image sequence. Since the number of tracks grows
exponentially, the main issue that must be solved is how to keep the track count down.

and virtual or augmented reality [2]. In such cases, the ac-
celerometer is placed on the same rigid object as the camera,
which moves in relation to its environment. This contrasts
with the setup described in this paper, where the camera is
stationary and accelerometers are placed on the moving peo-
ple in the camera’s field-of-view (FOV) in order to identify
them.

In the literature, people in sensor networks have been
localized and identified using wearable sensors such as ID
badges [3][4], the combination of ultrasound with radios
[5], radios signal properties [6], and inertial sensing units
[7]. Ultrasound-based approaches require bulky nodes that
consume relatively large quantities of energy. Although ID
badges present low spatial resolution when used by them-
selves, motion models [3] or additional sensing modalities
can be used to improve spatial accuracy [4]. Radio signal
strength localization is subject to many random factors in
uncontrolled environments, such as antenna orientation [8].
Radio Doppler-shift has been used to localize targets [6], but
require a large number of infrastructure nodes. In [7], ac-
celerometers and magnetometers are used along with ID sen-
sors. This approach requires the knowledge of the building
map to constrain the location of the particles in their parti-
cle filters. One similarity among many of the multi-person
solutions is that they require an exact association between
detected people from one frame to people detected in the
next. This problem is known to be NP-hard [9]. One of the
seminal works in this area is the multiple-hypothesis track-
ing algorithm [10]. When only the position of each detected
person is used to perform this association, this is called the
motion correspondence problem and is the subject of much
research [11]. Other times, additional image features (such
as size, color, shape or motion gradient) [12][13] or motion
models are used to offer additional clues regarding frame-to-
frame associations, but usually with mixed results in uncon-
trolled environments. In contrast, the algorithm presented
here is lightweight, does not make assumptions about mo-
tion models, and does not require an exact solution of the
association problem as input.

3. PROBLEM DESCRIPTION
The problem we solve in this paper is the matching of the

locations of people detected with a camera network to their
accelerometer signals, in order to obtain location-ID pairs.
The core of the identification problem can be described as
finding the matching between accelerometers and detected
locations that maximizes a similarity measure. Therefore,

if Zk is the set of all accelerometer measurements at time
k, and Xk is the set of all detected locations, then at each
time k we must find the match matrix Mk according to the
expression below:

arg max
Mk

|Zk|X
i=1

|Xk|X
j=1

f(zik, x
j
k)M ij

k (1)

where zik is the ith accelerometer measurement at time k,
and xjk is the jth detected position at that time. Note that
the index i of the accelerometer measurements is the ID of
the nodes that transmitted them, while the j’s are random
internal IDs of each detected person without actual phys-
ical relevance. The match matrix Mk is a matrix of size
|Zk| × |Xk| describing the associations between accelerome-
ters and detected people in the image frame. Since the same
person cannot be wearing two accelerometers, and the same
accelerometer cannot be in more than one place at a time,
Mk must follow a few constraints:

M ij
k =


1 ⇒ zik, x

j
k are associated

0 ⇒ no association
(2)

M ij
k = 1⇒


M i`
k = 0 ∀ ` ∈ [1, |Zk|] , ` 6= j

M `j
k = 0 ∀ ` ∈ [1, |Xk|] , ` 6= i

(3)

Despite the brief definition, the problem that is targeted
in this paper cannot be solved by directly associating ac-
celerometers to detected people as described in Equation 1.
Instead, the two types of measurements (accelerations and
positions) must be brought to a common representation in
order to be compared, which, as will be described later, leads
to an exponentially complex problem. As shown in Figure 2,
our solution is divided into two parts:

Identification — In order to match the motion data from
the wearable accelerometers with detections from the cam-
era nodes, we transform each into a signal that is propor-
tional to the person’s floor-plane acceleration. We, then,
measure their similarity by computing their correlation co-
efficient. This is described in Section 3.1. To obtain ob-
tain these acceleration measurements from the detected lo-
cations, however, we must first obtain a time-series of loca-
tions for each person in the scene (tracks). This is called
the multi-dimensional association problem, and it is known
to be NP-hard [9].

Association — Rather than solving the association prob-
lem, we make use of the fact that correct tracks must belong
to real people in the scene, and therefore must correlate with
some accelerometer (exactly one, in fact). We use this to
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Figure 3: Base case described in Section 3.1, where
a single person is in the camera’s field of view,
while two accelerometers are within communication
range. Signals proportional to the person’s speed
are compared, and the best matching accelerometer
is found to have ID = 2.

Figure 4: Superimposition of aligned signals from
accelerometer and camera, showing the approximate
proportionality between them.

approximate the multi-dimensional association problem as
a one-dimensional association with polynomial complexity.
This is described in Section 3.2.

In the following subsections we describe two base-case sce-
narios from which our solutions to the identification and as-
sociation stages are derived.

3.1 Base-Case for Identification Problem:
1 Person in FOV, 2 Accelerometers

Consider the scenario where there is a single person in the
camera FOV while two accelerometer nodes can be heard
through the wireless channel (Figure 3). If it is known a
priori that there is only one person in the FOV, then it
is simple to create a time-history of the person’s locations,
as there are no frame-to-frame association ambiguities: the
person detected in image frame Ik at time k is always asso-
ciated to the person detected in frame Ik+1. This reduces
the association problem to a trivial step and allows us to
focus solely on the identification. This section describes the
process by which we compare and match signals in order to
identify people in the FOV.

Position measurements from the camera contain instan-
taneous information with an absolute frame of reference in
space, and with no association among previous measure-
ments (no frame of reference in time). Meanwhile, accel-
eration measurements obtained from the body-mounted ac-
celerometer nodes have no spatial frame of reference, but
have a clearly defined temporal frame of reference. To find
the similarity between these two signals, we must first con-
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Figure 5: (a) Correlation between 5 tracks and 2 ac-
celerometer signals, showing the large difference be-
tween correct and incorrect matches. (b) Histogram
with sampling distribution of correlation coefficient.
A clear threshold separates correct matches from
incorrect ones.

vert them into a common representation, or intermediary
format. This process is known as data alignment [14]. We
align the two signals to the same temporal frame of refer-
ence by associating all position measurements that belong
to the same person into a time series. From this time se-
ries, the person’s acceleration in the image plane can be
easily extracted by double differentiation, as shown in Fig-
ure 3. We also align the accelerometer measurements into a
signal proportional to the overall body acceleration by cal-
culating the magnitude of the 3D acceleration vector and
finding the envelope of the signal to remove noise caused
by the stepping motion and by accelerometer-bouncing ar-
tifacts [15][16]. Figure 4 shows the similarity between two
matching signals that were processed in this manner. These
two signals are proportional to the person’s floor-plane ac-
celeration, and, therefore, also proportional to one another.

If α and β are the functions which align accelerometer and
camera signals into the same common representation, then
the similarity g(·, ·) between the two signals can be calcu-
lated by detecting whether the two signals are proportional
using Pearson’s correlation coefficient r:

g(zik, θ
`
k) = r(α(zik), β(θ`k)) (4)

where θ`k is a track containing a time series of consecutive
person detections θ`k = (x`0k−n, ..., x

`n
k ) with n ∈ N and 0 <

n < k. Figure 5(a) shows the experimental value of the
correlation coefficient between 5 tracks and 2 accelerometer
signals. The correct matches can be easily seen by their
strong correlations.

Note, however, that g : Zk × Θk 7→ R from Equation 4
has a different domain than the similarity function f from
Equation 1. To assign IDs to detected people using g, the
maximization problem in Equation 1 must be modified to
use tracks rather than person detections:

arg max
Ωk

|Zk|X
i=1

|Θk|X
`=1

g(zik, θ
`
k)Ωi`k (5)

where Θk = {θ`k} is the set of all tracks at instant k, and
Ωk is a match matrix associating accelerometer signals to
tracks. The matrix Ωk follows similar rules as Mk (Equa-
tion 3) but it additionally does not allow the same detected
person to be assigned to multiple tracks at any time instant.
So Ωk must follow the additional rule that for any two el-
ements equal to 1, the corresponding tracks must have an
empty intersection:

Ωi`1k = Ωi`2k = 1, `1 6= `2 =⇒ θ`1k ∩ θ
`2
k = ∅ (6)



Figure 6: Limiting number of track hypotheses
through gating. When a single detection is within
the gate, identification can be done directly (Sec-
tion 3.1). Otherwise, association must take place
(Section 3.2).

We call this the “strong no-intersection” property, which will
be relaxed in Section 4 in order to approximate the solution
for real time operation.

3.2 Base-Case for Association Problem:
2 People in FOV with Accelerometers

In the previous section we outlined a signal-comparison
method to identify people given a trivial base scenario. In
the same vein, in this section we will employ a base-case
scenario to describe a method by which accelerometer mea-
surements can be used to influence and simplify association
decisions. To understand the underlying problem, consider
the situation where it is known that exactly two people are
in the FOV, and they are within a large distance of one
another. Then it is easy to infer their position histories
(association) by creating tracks connecting each detection
at frame k to the only detection at k + 1 that is within a
physically plausible speed threshold — a process known as
gating.

However, if the two people approach one another (Fig-
ure 6) tracking ambiguities arise, giving rise to multiple
competing track hypotheses. If all possible track hypotheses
are considered by the tracking algorithm, then due to com-
binatorial explosion the complexity of the problem quickly
becomes unmanageable. This is shown in Figure 7, where
two people meet for 6 time instants (at 15 frames per second
this corresponds to 0.4s) generating more than 64 hypothe-
ses. If it is known that there are exactly N people in the
FOV, then the number of hypotheses after K ambiguous
frames is N !K . If the people are allowed to enter/leave, and
a realistic detector is assumed (with the possibility of false
positive detections), then the number is even larger.

This association problem can be described as selecting the
set of tracks that, at each time instant k, globally minimizes
some distance metric h:

arg min
Φk

|Θk−1|X
`=1

|Xk|X
j=1

h(θ`k−1, x
j
k)Φ`jk (7)

where Φk is a match matrix that follows the same rules as M
in Equation 3 (which causes the constructed tracks to natu-
rally follow the strong no-intersection rule from Equation 6).
From Φk, the set of tracks Θ?

k which solves Equation 7 for
time instant k is directly obtained. The simplest similar-
ity metric for track-to-location association is the Euclidean
distance between the track’s latest location x`nk−1 and the

Figure 7: Base-case for Section 3.2. After this
6-sample-long ambiguity, the number of track hy-
potheses grows as an exponential of a factorial.

detection xjk:

h(θ`k−1, x
j
k) = dist(x`nk−1, x

j
k) (8)

where n is the track length. This is often called nearest-
neighbor association.

As described before, it is not tractable to exactly solve
Equation 7 due to the expansive number of tracks. Luckily,
to identify the people in the scene it is not necessary to solve
this complex association problem, since the no-intersection
property is handled later in the process by the maximiza-
tion in Equation 5. So we bypass this problem by generating
several conflicting track hypotheses (Θk), rather than find-
ing the best non-conflicting solution (Θ?

k). The set Θk of
track hypotheses is defined to contain all tracks that pass a
goodness criterion:

Θk =


θ`k ∈ Θk−1 ×Xk :

h(θ`k−1, x
j
k) < τθ,

∃ zik ∈ Zk | g(zik, θ
`
k) > τr

ff
(9)

where τθ and τr are thresholds that filter out bad hypothe-
ses. Thus, only tracks within the gate are considered (h(·, ·) <
τθ). Here, the similarity measure g is used in a manner
analogous to the use of additional image attributes (size,
color, shape) and motion models that are usually employed
in multiple-target trackers. In this case, we keep only the
tracks that can be explained to some degree by at least one of
the accelerometer signals. This is described in greater detail
in Section 4.2. Of course, image and motion attributes from
the literature can be used in addition to the accelerometer
signal, for increased robustness if necessary.

4. PERSON-IDENTIFICATION
ALGORITHM

As our person-identification formulation is composed of
two interconnected parts (association and identification), we
design our algorithm as a cycle consisting of two blocks: a
tracker and a comparator.

The tracker generates a set Θk of tracks from sequences
of person detections, filtering them according to the param-
eters that rely solely on track properties (i.e. the τθ filter
from Equation 9). The comparator is in charge of perform-
ing the maximization in Equation 5 taking Θk as input, and
pruning tracks that do not pass the τr filter.

The comparator then passes the set Θ′k of filtered tracks
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Figure 8: Overview of the entire algorithm show-
ing the interactions of its two main logical blocks:
a tracker generates a small set of track hypotheses
from the large pool of possible associations; and a
comparator solves the association problem described
in Equation 5, assigning IDs to each detected people.

back into the tracker as input. The output of the algorithm
is found by using the Hungarian method [17] to solve the
one-dimensional association problem from Equation 5 with
complexity O(max(|Xk|, |Θk|)3).

This cycle is the core of our method, and is summarized
in Figure 8.

Although in the problem description we discussed the sim-
ilarity between each track and each accelerometer, g(zik, θ

`
k),

this is not exactly how things take place in the identifica-
tion algorithm. Instead, each track is marked as belonging
to a single accelerometer, which is the only one it will ever
be compared to. The reason for this is that the correla-
tion coefficient requires the two input signals to be of the
same length. When each track is created, we must boot-
strap the sufficient statistics to compute its correlation with
each specific accelerometer. This also allows us to keep the
complexity low, since tracks that have historically not cor-
related well with a given accelerometer can be pruned and
never compared to that accelerometer again.

Other than this, the algorithm takes two main approaches
to allow real time operation: (1) it simplifies the accelerom-
eter-to-track assignment problem in Equation 5 by weaken-
ing the track no-intersection property; (2) it restrains the
number of track hypotheses to a minimum through several
means.

4.1 Relaxing the No-Intersection Property
Since our algorithm aims to provide the best immediate

results without the intention to reconstruct past traces, we
relax the strong no-intersection constraint of Equation 6 to
require only that the newest position measurements in each
matched track do not intersect. That is, the following weak
no-intersection constraint is used instead:

Ωi`1k = Ωi`2k = 1, `1 6= `2 =⇒ xj1k ∈ θ
`1
k 6= xj2k ∈ θ

`2
k (10)

Although this relaxes the strong no-intersection property of
Equation 6, the similarity measure g used in the identifica-
tion (Equation 5) guarantees that tracks correlate well with
their matched accelerometer. So, as long as the motion of
the people in the scene is not too similar and synchronized
with one another, most tracks selected by Equation 10 will
still be strongly non-intersecting. In the case that their mo-
tion is correlated, then it is not possible to identify them
based on motion characteristics alone, whether strong no-

intersection is enforced or not. Hence, this simplification
has little negative effect on the quality of the tracks, while
greatly limiting the problem’s complexity.

4.2 Adjustments to Control the Number of Hy-
potheses

Combinatorial Contention — When there are ambigu-
ous situations, such as in Figure 7, the number of tracks
grows exponentially. In order to contain this growth, we
only resolve ambiguities after the people move apart. For
this, the algorithm keeps track of the number of people in-
side each track’s gate (a circle of radius R). If the number
is greater than one, then the track is marked as being am-
biguous. Otherwise, it is marked as unambiguous. Each
ambiguous track θ`k−1 gets extended into time k as θ`k by
assigning it the closest detection xk, rather than forking
into one track for each within-gate detection. When a track
transitions from ambiguous to non-ambiguous, however, it
is forked for each detection inside a gate with radius 2R. If
N2R is the number of people in the 2R gate, then, instead
of ending up with N !K tracks as before, each track splits
into just N2R alternatives, most of which are pruned within
a few seconds by a track-pruning process.

Pruning Tracks and Allowing “Leaving” — If a
track correlates badly with all accelerometer signals, then
it cannot belong to an accelerometer-wearing person, and
should be pruned. Figure 5(b) shows a histogram of the
correlation values of correct and incorrect accelerometer-to-
track assignments. It is clear from the plot that the two can
be easily distinguished, and that a threshold value τr ≈ 0.55
can be used for this purpose. However, as shown in Fig-
ure 9(a), the correlation r between an accelerometer and a
track takes a few seconds to converge. Oftentimes the cor-
rect accelerometer-track association has a poor correlation
(< τr) for the first few seconds, which can cause correct
tracks to be prematurely pruned.

For this reason, we compute the estimated correlation er-
ror as a function of track age by using confidence intervals.
But since Pearson’s correlation coefficient does not have a
Gaussian sampling distribution, we must first convert it with
Fisher’s z ′ transformation, for which confidence intervals can
be calculated:

z ′(r) = 1
2

ln[(1 + r)/(1− r)] (11)

The standard error of z ′ is known to be SE = 1/
√
n− 3,

where n is the number of samples used in the computation of
the correlation. With this, we compute the 90% confidence
interval of f as ranging from z ′low to z ′high:

z ′low(r) = r − 1.645√
n−3

z ′high(r) = r + 1.645√
n−3 (12)

where the number 1.645 comes from the 90% confidence in-
terval of a Normally distributed random variable (i.e. 90%
of the density is within 1.645 standard deviations from the
mean). Equation 9 is, then, modified to apply the τr thresh-
old on z ′high instead. That is, α(·) > τr becomes z ′high(·) >
z ′(τr). This way, the only tracks that get pruned are those
where there is a 95% confidence that the track does not cor-
relate above τr (95% because the threshold acts on a single-
sided confidence interval). For comparison, Figure 9(b) shows
the z ′ and confidence intervals for the signals from Fig-
ure 9(a).

Since correlations of longer signals have a smaller standard
error, they are inherently more trustworthy. We, therefore,
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Figure 9: Top: Since the correlation takes time
to converge, the use of a fixed threshold for track-
pruning can result in the correct track being prema-
turely deleted. Bottom: We guard against prema-
ture pruning this by applying the threshold on the
top margin of the 90% confidence interval, resulting
in 95% confidence pruning.

prioritize longer tracks by using z ′low instead of r in Equa-
tion 4. So if two tracks have the same r (and, hence, the
same z ′) the older track will be given a higher weight in g
since the z ′low will be higher for the older track. With this
change, Equation 4 becomes:

g(zik, θ
`
k) = z ′[ r(α(zik), β(θ`k)) ]− 1.645/

√
n− 3 (13)

Note that, as the standard error cannot be computed for
tracks smaller than 4 samples, we only allow a track to be
pruned if its size is greater than 4. Given that new tracks are
created at the end of each ambiguous period, this causes the
number of tracks to depend on the number of ambiguities.

Faster Error Recovery and Allowing “Entering”
— When a new person enters the camera FOV, a new track
must be created for comparison with each accelerometer.
Similarly, when a new accelerometer is detected, it must
be included for comparison with each existing track. For
this reason, the algorithm always keeps at least one track
for each accelerometer-location combination. If one does
not exist, it is created. This can happen either because a
new person or accelerometer has been detected (“entering”)
or because an existing track has been pruned. The end
result is that tracks that may or may not represent a correct
ground-truth trace are constantly created (and constantly
pruned, if they do not pass the τr threshold). This ensures
that there is always one alternative for each accelerometer-
location assignment, which allows for quick recovery in case
a correct track becomes associated with the wrong detection
due to tracking errors. This puts a lower bound of |Zk| ×
|Xk| on the number |Θk| of track hypotheses at any time k.
When there are no ambiguities, the track-pruning process
ensures that the lower-bound is reached. Hence, for most
real-world cases, it is expected for the average number of
track hypotheses to be close to |Zk| × |Xk|.

count 2 3 4 5
precision 0.951 0.875 0.790 0.627
recall 0.956 0.931 0.887 0.821
proc. time (s) 2.57 6.29 11.02 16.74
ambig./pers. 38.25 68.57 93.90 116.6
avg. tracks 3.92 8.81 15.63 24.39
max. tracks 8 15 24 30

Table 1: Experimental results for algorithm when 2,
3, 4 or 5 people are in the FOV at the same time.

5. EVALUATION
We first performed a set of experiments where data was

gathered with a wide-angle USB camera and an off-the-shelf
inertial measurement unit. These were used to verify the
correctness of the algorithm independently from implemen-
tation-dependent effects, such as the performance of the per-
son detector or of the network layer. A second set of exper-
iments were performed using the iMote2 sensor node with
our custom camera board [18], as well as TI EZ430-RF2480
nodes equipped with a SparkFun IMU 5DOF board, contain-
ing an Analog Devices ADXL330 accelerometer (Figure 1).
The purpose of these is to demonstrate the viability of the
system in actual multiple-person deployments. For all of
these experiments, the cameras were mounted on a 3m high
ceiling, facing down. This gives a total area of 3m × 2m
where people are entirely contained in the FOV. This is the
area within which the people were asked to stay. The ac-
celerometer nodes were placed on the front of each person’s
belt. The orientation of the accelerometer is unimportant,
given that it is the magnitude of the 3D acceleration vector
that is used in the similarity metric.

We captured five separate videos and the corresponding
accelerometer traces of a single person walking in a room for
approximately 1 minute. The person detector used in this
experiment computed the person in the scene by compar-
ing each frame to an image of the empty room (background
subtraction). Since the traces were captured separately in a
static, controlled environment, we were able to obtain high
precision image-plane coordinates for each person by calcu-
lating the center of mass (centroid) of the foreground pixels.
The accelerometers were sampled at 100Hz, and the camera
at 15Hz. Time was roughly synchronized by hand, by visu-
ally matching the features from an acceleration magnitude
plot for each accelerometer to a plot of the corresponding
centroid’s speed.

We ran the algorithm for all different 2-person, 3-person,
4-person and 5-person combinations of the five traces. The
centroid traces were overlaid onto the same image plane and
the centroids’ internal index were randomly shuffled for each
frame. We additionally simulated people entering and leav-
ing the field of view at random times while still being in
range for the accelerometer sensing. This was done by ran-
domly cropping the beginning and end of the centroid traces,
and leaving the accelerometer traces intact. For all of these,
the ground truth frame-by-frame associations and absolute
person IDs were known, given that the traces were acquired
separately. Using the ground truth data, we calculated the
following metrics: Precision answers the question: when
the system identifies a person, how often is the ID assign-
ment correct? The precision is calculated as TP/(TP+FP ),
where TP is the number of true positives (correct assign-
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Figure 10: Output of the algorithm for a 4-person
trace. The x-axis is time in seconds. The ambigu-
ity resolution and hypothesis correlation plots for
accelerometers 2, 3 and 4 are omitted to conserve
space.

ments) and FP is the number of false positives (incorrect as-
signments). Recall answers the question: when a given per-
son is in the scene, how often does the system correctly iden-
tify him/her? The recall is calculated as TP/(TP + FN),
where FN is the number of false negatives, that is, the num-
ber of times the person was deemed absent when they were
actually present.

The averaged experimental values of these two metrics are
shown in Table 1. The algorithm shows strong performance
for 2, 3 and 4 people. For 5 people, the precision falls un-
der 0.7, but the recall stays high throughout. The measured
processing time is, as expected, proportional to the average
number of tracks. Since the number of tracks stays within
the predicted value of |Zk| × |Xk|, the processing time re-
mains nearly constant. Also note that the system always
executed many times faster than real-time.

The number of ambiguous frames per person (ambigs/per)
is also reported. Were the tree-pruning process not present,
the expected number of tracks would be in the order of
|Xk|ambigs/per. This is at least 238.25 = 3.26 × 1011 for
the 2-person case, and much more for the others. The cor-
rectness of the algorithm has a stronger dependence on the
ambig/person rate than on the number of people in the FOV
per se.

Figure 10 shows the output of the algorithm for an exam-
ple trace where data for 4 people were overlaid. The track
assignment plots show the ground-truth ID of the centroid

that was associated by the algorithm to each accelerometer.
For an accelerometer with ID = A (where A is some inte-
ger), it is desirable for the plot to be a constant line at y = A.
This is often the case after enough time has passed for the
correlations to converge, as seen in the plots. Meanwhile, the
ambiguity resolution plot (shown only for person 1, due to
space restrictions in this paper) shows how often ambiguities
occur (usually consisting of multiple frames at a time), and
whether the algorithm is able to resolve them correctly or
incorrectly. On average, ambiguities were correctly resolved
80.72% of the times. For the remaining 19.28% when the
ambiguity resolution failed, the algorithm eventually found
the correct assignment through the correlation metric. That
is, the algorithm is able to automatically recover from incor-
rect hypotheses. Finally, the third type of plot in the figure,
the hypotheses correlation plot, shows the z ′ metric of the
selected hypothesis (thick blue line) compared to that of the
losing hypotheses for the same accelerometer (light blue).
The hypotheses for other accelerometers are shown in light
gray. Note how after ambiguous periods small tracks fork
from the correct one. They are quickly pruned by the com-
binatorial contention process described in Section 4.2. You
can find videos of these experiments at http://enaweb.eng.
yale.edu/drupal/InertialIdentification.

To assess the viability of the system as an online sensor
network service, we also tested a prototype implementation
consisting of an iMote2 camera node mounted on the ceil-
ing, and two people carrying wearable EZ430 sensor nodes
with accelerometers. The centroid of each foreground blob
was extracted by segmenting them through 8-neighbor con-
nected component analysis. As expected, this often resulted
in the typical blob-merging and splitting artifacts that are
a product of small occlusions and visual similarity with the
background scene. Detections were collected into packets
containing pairs of centroids and timestamps, and transmit-
ted wirelessly to a base node. The whole process took place
at a rate of around 15Hz in the sensor node, fluctuating
based on the number of people in the FOV. The wearable
nodes used in the experiment were programmed to sample
the accelerometer at a rate of 50Hz, calculating the signal
envelope locally, and transmitting it to the base through
its ZigBee radio. The collected data was then parsed in
a nearby computer, resulting in precision and recall mea-
surements comparable to those in Table 1. This prototype
system demonstrates that it is possible to identify people us-
ing acceleration and camera measurements under non-ideal
real-world sensing conditions (including false positives, false
negatives and other types of misdetections) as well as under
the constraints of limited local processing and networking
bandwidth.

6. CONCLUSION
We have presented a system that uses infrastructure cam-

era nodes and wearable accelerometers to identify people in
a sensor network, achieving good precision and recall. Other
than memory and processing requirements, there is no limit
on the number of tag-wearing people or the number of people
in the FOV. We have also described a set of approximations
that allow for real-time execution. Although these approxi-
mations increase the number incorrect matches immediately
following ambiguous periods, experimental results show the
algorithm is able to quickly recover.

Possible improvements include utilizing additional image



features for increased robustness against ambiguities. By
coupling this system with color histograms, for example,
better detection rates should be easily achieved. Future
work includes expanding the algorithm to make use of mul-
tiple cameras as a single seamless sensor, as well as con-
sidering deployments where there are large gaps in camera
coverage. Before the system can be used in a long-term de-
ployment, power consumption and network utilization must
be properly analyzed. To this end, it is possible that an
adaptive sampling and transmission scheme can be devised,
which preprocesses accelerometer samples and only trans-
mits them if it is deemed that they can significantly impact
the correlation metric.
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