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Lightweight People Counting and Localizing for
Easily Deployable Indoors WSNs

Thiago Teixeira and Andreas Savvides

Abstract—We describe a lightweight method for counting and
localizing people using camera sensor networks. The algorithm
makes use of a motion histogram to detect people based on motion
and size criteria. The motion histogram is an averaged shifted
histogram that estimates the distribution of people in a room given
the above-threshold pixels in a frame-differenced “motion” image.
The algorithm provides good detection rates at low computational
complexity. In this paper, we describe the details of our design and
experimentally determine suitable parameters for the proposed
histogram. The resulting histogram and counting algorithm are
implemented and tested on a network of iMote2 sensor nodes. Our
implementation on sensor nodes uses a custom sensor board with
a commercial off-the-shelf camera, but the motion histogram is
designed to easily adapt to ultralow-power address-event motion
imagers.

Index Terms—Assisted living, human counting, wireless sensor
networks.

I. INTRODUCTION

A SYSTEM that counts and localizes people is a common
requirement in a broad spectrum of applications, such as

assisted living, home care, security, workplace safety, and en-
tertainment. For such a system to work for prolonged periods
of time in an indoors environment where new people may enter
and leave, and where objects may be introduced, replaced or
moved, it cannot rely on wearable sensors or object tags. Also,
for scalability purposes, it should be low cost and easy to install,
requiring little or no on-site calibration. What is more, for mul-
tiple reasons, many applications require the system to observe a
certain level of privacy, regarding the people in the scene.

In response to these demands, our research pursues the
development of lightweight motion-discriminative sensors
that bridge the gap between specialized scalar sensors such as
passive infrared (PIR) and generic array-based ones such as
cameras. Our approach to this challenge is to explore biolog-
ically inspired address-event (AE) architectures that operate
asynchronously at the pixel level to provide feature information
instead of just images. AE sensors also have the advantage of
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Fig. 1. Our custom camera board with wide-angle lenses mounted onto the
iMote2 sensor node.

being typically ultralow power. This paper describes a light-
weight algorithm for people-counting and localizing given the
output of a motion-discriminating address-event imager.

Our previous work in [1] provided an initial evaluation of
new address-event imager architectures and a model for emu-
lating such architectures on wireless sensor nodes to test AE al-
gorithms. In this paper, we present and evaluate a design for lo-
calizing and counting people in indoor spaces with a set of wide-
angle camera sensor nodes mounted to the ceiling, facing down.
The initial results of this research have been published in [2],
where we briefly introduced our people-counting and localizing
network. In this paper, we expand on that work by providing
further insight on the operation of the person-detector and uti-
lizing an improved tracker on our experiments. Our design tar-
gets the architecture presented in [1] and localizes and counts
people using a histogram derived from motion and size infor-
mation. The resulting algorithm runs in real-time on iMote2
camera sensor nodes (Fig. 1) and is currently deployed on a
home testbed for assisted living. The main contribution of the
work described here is the design and evaluation of the light-
weight histogram-based method for localizing people using mo-
tion and size information. By employing an address-event mo-
tion imager, the computational requirements of the histogram
can be further reduced to operate on even smaller processors.

The results of this work are applied in the BehaviorScope
project at Yale [3], which uses the information about people’s
movement in space to infer their behaviors, with assisted living
as the driver application. Human locations collected from a
wireless sensor network (WSN) deployed inside a house are
processed in the context of a building floorplan to recognize the
activities of the house inhabitants. The space-time locations of
the inhabitants of a house during the course of the day provide

1932-4553/$25.00 © 2008 IEEE

Authorized licensed use limited to: Yale University. Downloaded on August 25, 2009 at 17:59 from IEEE Xplore.  Restrictions apply. 



494 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 2, NO. 4, AUGUST 2008

a set of macro-gestures that are parsed by a framework of
hierarchical probabilistic context-free grammars into a set of
predefined activities [4][5].

The rest of this paper is organized as follows. Section II pro-
vides some background to the problem and surveys the related
work. Sections III and IV outline our approach and describe
the details of the motion histogram. Section V explains how
a sensor node uses the histogram to localize and count, and
Section VI presents our experimental results. Video demonstra-
tions of our experiments are available at http://www.eng.yale.
edu/enalab/behaviorscope/counting.htm. Section VII concludes
the paper.

II. BACKGROUND AND RELATED WORK

There are many systems in the literature that aim to detect,
count, localize, and/or track humans. Lately, most of them uti-
lize cameras as the main sensing modality, but there are others
that rely on more unusual modalities such as pressure sensors
[6] and PIR arrays [7]. In [6], pressure-sensitive floor tiles are
installed and consecutive footsteps are monitored to discern the
tracks of multiple people. However, this approach requires a la-
borious installation process that makes it unfit for most existing
environments. Meanwhile, the PIR arrays from [7] are used to
count the people on a set of stairs. This is similar to [8], where
a camera is employed but only for the information contained in
its center scanlines. These types of approaches are used to count
people at the entrance and exit points of closed spaces, which re-
quires very few sensors. On the other hand, counting errors that
occur at detection time end up propagating indefinitely.

As for more traditional camera-based human detectors, there
are those who try to segment a human from an image by com-
paring it to an empty background frame, and those who di-
rectly employ some type of pattern matching. The patterns to be
matched can be the eigenvectors given by the principal compo-
nent analysis of a library of human images, or tuples of features
such as SIFT [9], [10] and gradient orientation histograms [11].
Pattern-matching approaches depend on extensive training, and
the feature extraction and matching processes can be computa-
tionally intensive.

The more typical approach is to employ background differ-
encing followed by a series of morphological operations in order
to obtain a workable silhouette of a person to be segmented (or
“blobbed”). See Fig. 2(a). This silhouette can be used to con-
firm the blobbed object is indeed a human [12], or to determine
the shape of the bounding box from where other features will
be extracted for that purpose [13]. Since the low-level morpho-
logical operations do not guarantee that each person translate
to exactly one blob, a further pass has to be performed where
blobs that are close enough are merged together. The end result
is that it is common to merge blobs that do not belong together,
as well as to separate blobs that compose the same object, as in
[14] and [15]. These algorithms usually perform additional steps
after blobbing is done, in an attempt to correct such anomalies.

Some researchers utilize stereo cameras to assist in the image
segmentation process, as is the case in [14]. In that paper, the

Fig. 2. Advantages of employing address-event (AE) imagers: since the com-
putation starts at the pixel level, initial feature-detection steps can be skipped.
Furthermore, the algorithms that operate on AE data are typically simpler.

authors describe their tracking system for assisted living. Their
background model takes into consideration only the pixel inten-
sity oscillations, and would fail in a less controlled environment.
More importantly, their system does not handle rooms larger
than the single stereo-pair’s field-of-view.

Another approach [16] utilizes multiple cameras with largely
overlapping field-of-views to get information about the 2-D
cross section of a room, its objects and its occupants. The
algorithm provides good location precision, but requires the
use of multiple cameras to achieve that when covering even
a small room. What is more, their approach demands precise
calibration of intrinsic and extrinsic camera parameters. In the
setting of assisted-living situations, however, the largest issue
is that the computed cross section fails to capture a person that
is sitting on a couch, lying down, or one that has fallen on the
floor.

Finally, there is the problem of maintaining and updating the
background model. This is a necessary process due to the pres-
ence of a series of change factors in a stream of frames, among
which are:

1) natural oscillations in pixel intensity;
2) gradual changes in lighting, such as those imposed by the

movement of the sun;
3) presence of repetitive background motion, such as waving

foliage;
4) changes in position of static objects, such as furniture.
There are many algorithms that try and cope with these issues

[17]. Scenario 1), for example, can be dealt with by modeling
each pixel as Gaussian random variable and estimating their
mean and standard deviation from a short calibration phase.
However, this approach cannot cope with 2), 3) or 4), which
require the background to adapt.

The simplest adaptive background-modeling technique is to
continuously average all frames. This has the undesirable ef-
fect of generating “ghosts” in the areas where there is most
activity, which ends up making the subtraction in those areas
less reliable. Better adaptive background-modeling approaches
are typically computationally expensive, sometimes modeling
each single pixel as a mixture of Gaussians [18] or a Kalman
filter [19]. Many of these approaches require the field of view
(FOV) to be empty at initialization—something that may not
be possible in the practical settings we are interested in. Even
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then, in the presence of scenario 4), most approaches either
fail or recover slowly. In assisted-living and office situations,
though, these background changes occur very often. Take as an
example the presence of office chairs, which are moved every
time someone sits or stands.

In light of the aforementioned problems with background
differencing, the work presented in this paper bypasses many
of these issues by making use of frame differencing instead
[Fig. 2(b)]. Frame differencing consists of subtracting the pre-
vious frame from the current one, to detect pixels that changed
in intensity. The resulting frame is subsequently thresholded,
resulting in a boolean image. This simple computation is ro-
bust in scenarios 1), 2), and 4) from the list, which are the most
common in indoors deployments. This way, the complex back-
ground modeling steps become unnecessary, freeing system re-
sources. Frame differencing, however, can generate images that
are harder to segment. This is probably one of the main rea-
sons why the computer-vision community has largely preferred
background subtraction approaches. Our solution to this is to
constrain certain aspects of our deployment in order to allow us
to make simplifying assumptions. Namely, we place our cam-
eras on the ceiling, facing straight down, and assume the ceiling
height is known. As will be discussed in Section III, this lets
us completely bypass these segmentation issues by employing a
motion histogram. Another problem associated with frame-dif-
ferencing is that people can only be detected while moving. In
this paper, we make use of additional features to track stopped
targets.

More importantly, our approach is built from ground up
with address-event image sensors in mind. These sensors are
biomimetic cameras that move the feature detection step into
the imager’s pixels, taking inspiration from the cornea. Much
like neurons in the cornea, each pixel asynchronously emits
a pulse (or spike) when an event is captured. By “event” it is
meant anything that can be measured. In the specific case of
the imagers for which we designed our motion histogram, an
event is signaled whenever a pixel detects a certain intensity
variation. The address-event representation (AER) protocol is
then used for multiplexing all these spikes into an output data
bus. For each incoming spike from pixel , the AER encoder
outputs the address of onto the bus. The event magnitude
information is not directly encoded. This differs from typical
cameras, where the magnitude is the main unit of information,
and where large arrays are transmitted regardless of whether
the scene is of interest. In AE cameras, magnitude is naturally
encoded into the event frequency. That is, in a motion-sensitive
AE imager, a pixel that detects the most motion fires most
often. Another distinction between these two types of cameras
is that address-event cameras do not discretize time into frames,
which leads to high-precision time measurements which can
only be obtained by ultrahigh-speed cameras. Surprisingly, the
power consumption of AE imagers is typically on the order
of milliwatts or hundreds of microwatts [20], [21]. In this
paper, we simulate the AE input through traditional imaging

techniques. Due to this, in our current setup, we do not get
the benefits of the precise time measurements of AE. What is
more, for use with address-event hardware, our algorithm must
be tweaked to operate at each incoming event, rather than on
a frame-by-frame basis. This can easily be done with methods
similar to those in [1].

III. OUR APPROACH

Humans can recognize and count other humans based on
shape, size, and movement. The background differencing
approach attempts to extract and operate on mainly the first
two types of information. We choose to focus on the latter two,
while at the same time simplifying them by introducing a set
of constraints on the deployment and the environment. First,
we assume that people inside the room are typically in motion.
Even though this does not always hold, it is certainly true for
each person at some instant in time. Second, in order to cover a
large area (requiring fewer sensors) and to minimize occlusions,
we choose to place the cameras on the ceiling, facing straight
down. In this configuration, and given the ceiling height, it is
fair to assume that human size lies within a certain predefined
range. Using these two assumptions, our goal is to classify as
a human each image entity that meets our movement and size
criteria and extract their discrete physical location from our
measurements.

To this purpose, we construct a motion histogram from frame-
differenced images and utilize that information to pinpoint each
person’s location. The histogram is designed to consider a typ-
ical human size in pixels, given the known characteristics of our
camera and the ceiling height, and use it to compute the dis-
crete human locations (histogram peaks) which best explains the
moving pixels in the frame-differenced image. These locations
can then be processed with higher level algorithms to track each
person and recognize their behavior [4], [3], [5]. However, the
unique labeling of each human and the association problems that
arise are not the focus of this paper, but rather our lightweight
sensing algorithm for human detection and localization.

IV. MOTION HISTOGRAM

A. Overview

For simplicity, consider the 1-D case of detecting a person
in the cross section of a background-differenced thresholded
image. As shown in Fig. 3(a), the foreground pixels for each
person are, ideally, all connected. However, this is usually
not the case—especially for frame-differenced images, where
above-threshold “motion” pixels are often sparsely distributed.
The approach described in this paper gets around these issues
by assuming that the size of a human is approximately known.
This allows a motion histogram to be created, which is in
effect an estimate of the unknown bivariate probability density
function of the locations of moving objects. The locations
which have the locally highest probability are then selected as
human detections.
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Fig. 3. (a) Cross section of thresholded background-differenced image with
two people present. (b) Histogram with three-pixel-wide bins. People are de-
tected at the histogram peaks, but the right-most person’s position is ambiguous.
(c) Superimposition of three histograms with same bin width but different bin
origins. (d) Combining the three histograms from (c), an averaged shifted his-
togram is formed. Notice how the histogram peak is now a better estimate of
the person’s position. Since the origin shift was in 1–pixel increments, this last
histogram looks like the result of a convolution, but other shifts may be used as
described in the text.

Given that the ceiling height is known (i.e., the camera’s
coordinate), the dimensions of the bounding box that encloses
the image of a human can be approximated by some known av-
erage value. Let be the average width of a human in the cross
section of an image frame. Then a histogram may be produced
by binning foreground pixels within bins of size . This is pic-
tured in Fig. 3(b), where . A mode-finding algorithm can
then be utilized to discriminate each moving person in the scene.
Although the histogram in the figure detects the first person’s
position very precisely, the position of the second person is am-
biguous. This effect is a consequence of the particular choice of
bin origin. Of course, in this case the second person’s location
can be better estimated by cleverly weighting each bin’s coordi-
nates according to the bin’s values, but that would bring back the
connectedness issues seen in typical image blobbing. A better
approach is to simultaneously use multiple different bin origins.
Thus, a single high-resolution histogram can be composed from
multiple shifted histograms, as shown in Fig. 3(c) and (d). This
type of histogram is called averaged shifted histogram (ASH).

The modes of the ASH in Fig. 3(d) are much better estimates
of each person’s location. Although the shifted histograms in
Fig. 3(c) are shifted by pixel, larger s are often used.
In the case when , the ASH becomes a convolution.

Surely, the smaller the the higher the achieved resolution,
since the worst-case peak location error for a histogram is given
by . However, when employing frame-differenced images,
higher resolutions often produce histogram peaks that do not
represent the modes of the underlying distribution. The rea-
soning behind this requires one to consider each thresholded
pixel as a Bernoulli variable. In that case, the probability that
a pixel at the motion edge is above-threshold is

, while that for a non-edge pixel is (in
an ideal noise-free scenario). Then, the motion histogram can
be modeled by considering each bin as a binomial distribution
binomial , where the sample size is the number of
edge pixels within the area . Using these assumptions, the
expected shape of the histogram for different values of can be
found by assigning to each bin the expected value of its bino-
mial distribution. For this “expected” histogram, the that gives
the smallest person-localization error will indeed be .
However, most instances of this histogram will display very
jagged lines, which can easily produce false-positive peak de-
tections. This situation can be dealt with by low-passing the his-
togram (using a Gaussian kernel, for example, or ASH weights)
to smoothen these false peaks. However, that introduces the
problem of choosing the best cutoff frequency so as not to drop
valid peaks. This is where ASHs with become attractive:
intuitively, the large bin shifts produce an effect similar to a low
pass at no extra cost, with the advantage that the ASH’s param-
eters have a physical interpretation.

Another similarity between ASHs and convolutions is that
ASHs may also employ different weights for pixels as a func-
tion of their distance to the bin center, in an attempt to further
increase the histogram’s accuracy. This is analogous to con-
volving the thresholded image with a given kernel—again, with
the main difference being that the parameter is always 1 for
convolutions.

To summarize, the motion histogram described in this paper
is a bivariate ASH with uniform weights (which make the ASH
comparable to a convolution with a square mask). The histogram
is calculated over the absolute value of the difference between
the current image frame and the previous. Moreover, as will be
discussed in Section IV-D, when using wide-angle lenses our
ASH is built from nonuniform bins, which are modeled after the
different shapes people take as they move away from the optical
axis. This effect is greatly accentuated when using wide-angle
lenses, which is the case in our deployment.

B. Histogram Structure

The primary goal of the motion histogram is to determine the
location of each person given the pixels that have changed the
most compared to the previous frame. Consider, then, the sub-
division of an image into partially overlapping areas (Fig. 4).
Each area is a subset of the image. Assume, for simplicity, that
the union of all such areas exactly cover the image: .
Then a motion histogram of dimensions is built
where there is a bin , for each
area in the image. Without loss of generality, for the rest of
this section we assume that the area centers are arranged in a
grid, and that so are the histogram bins.
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Fig. 4. (a) Histogram structure: histograms are composed of multiple bins de-
fined from overlapping areas in the image (left). The bin size is calculated from
human dimensions, and each bin can be uniquely identified by its top-left corner
position. Using these positions, a more traditional representation of the his-
togram may be composed (right).

The value of each histogram bin is the number of above-
threshold pixels in the corresponding . In Fig. 4, bin corre-
sponds to the blue area on the top-left side of the image. There-
fore, the relation can be defined, mapping each bin
in the histogram to their respective set of pixels in the image

. The notation is being used to denote the power set (i.e., the
set of all subsets) of . Thus, . Conversely,

where gives for each pixel
the set of bins that contain it.

If the bin areas on the left side of Fig. 4 are square with width
, and if the smallest distance between bin centers is , then

can be defined as

where and are the and coordinates of bin in the
histogram, and and are the coordinates of pixel in the
image. Similarly, the mapping for the square-binned ASH de-
scribed in the figure is:

The relations and need not be as trivial as these, and better
results may be extracted from irregular bins as we shall describe
in Section IV-D.

C. Filling the Histogram

As explained earlier and depicted in Fig. 5, the histogram
is filled using motion information from the difference of two
consecutive frames. The algorithm for filling the histogram at
each frame resets all bins to value 0, and then increments all
bins that contain each above-threshold pixel. That is, given an
above-threshold pixel , we increment all bins in the set .
The end result is that each histogram bin is assigned a value
corresponding to the total number of foreground pixels it en-
compasses

Fig. 5. Detecting positions from motion images: each pixel in the image is
mapped to one or more histogram bins (as shown in Fig. 4). Bin values are in-
cremented for each foreground pixel the bin contains. Histogram peaks detect
people’s positions. Note that, for simplicity, this diagram shows each bin con-
nected to a different four-pixel area. In reality, however, bins encompass many
more pixels.

Fig. 6. Pseudocode for histogram computation algorithm.

Fig. 7. Example histogram frame. (a) Moving pixels. (b) Resulting histogram.
People are detected at histogram peaks.

where the vertical bars denote set cardinality, and is the
threshold on the intensity variation. The location of a person
on the image plane can then be computed by running a
peak-finding algorithm on the histogram.

For additional robustness against noise, the histogram-filling
algorithm may be modified to incorporate information from pre-
vious frames. This is accomplished through the use of the vari-
able as shown in the pseudocode in Fig. 6. This way, each
new histogram is superimposed on the previous histograms, and
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acts as the blending factor. Hence, the instance where
the past histogram values are discarded is a special case of this,
with . Fig. 7 shows a histogram produced by this algo-
rithm with . An undesirable effect of employing a large

is that a person’s peak will tend to lag behind the person’s ac-
tual location, but we found that values smaller than 0.5 typically
produce acceptable results in this regard.

Another measure against histogram noise is to incorporate a
threshold after the peak-finding algorithm, such that only the
peaks that are tall enough are utilized in people-counting and
localizing. This value can be estimated by calculating the mo-
tion histogram for an empty scene, and choosing the mean bin
height plus two standard deviations. Although this threshold is
an empirical value, we find that it does not have to be a large
number ( % the number of pixels in the bin) and this value
should rarely require further adjustments.

The complexity of the histogram-filling algorithm in Fig. 6
is , where are the image dimensions,
and is the average number of bins that contain each
pixel. The peak-finding algorithm we used in our experiments
is , since it works by search for the local maximum
points in each 5 5 area of the histogram. Given that the his-
togram dimensions are usually much smaller than image dimen-
sions, the entire person-detection algorithm is bounded by the
complexity of the histogram-filling.

D. Tuning the Histogram: Wide-Angle Lens Considerations

In the case where each bin maps to equal, but shifted areas in
the image, the histogram can be seen as the result of the cross
correlation of the image with a human model. In the simplest
case, this model is a square, as in our discussion so far. Another
possibility is to utilize a more complex function as a kernel, such
as a multivariate Gaussian distribution. For the other types of
models considered later in this paper, the histogram-producing
operation will no longer be a cross correlation, since the kernel
shape will vary with its position.

The type of model utilized has an immense effect on the per-
formance of the histogram. This is an extension of the effects
that are seen in a cross correlation: the breadth and height of the
correlation peaks are the best when the kernel perfectly matches
the image. In the case of the motion histogram, if the model
is too small, multiple histogram peaks may appear for each
person. If, on the other hand, it is too large, then the chance that
two people incorrectly produce only one peak increases. Similar
considerations must be made when picking the window-shift
step size, : if the bins are too close, multiple bins may en-
close the same person; if too far, the person may be missed en-
tirely. These parameters are initially picked to match the average
human dimensions in the described setup, then fine-tuned em-
pirically (Section VI-A).

There are two additional effects that have not yet been ac-
counted for, but which must be considered when building the
histogram: perspective and lens distortion. Their effect is espe-
cially accentuated for wide-angle lenses and situations where
the object distance is fairly small compared to its length (in the
direction of the optical axis). Since a person is relatively large

Fig. 8. Effect of perspective and lens distortion on histogram. (a) Ground-truth
positions. (b) Image from top-view camera. (c) 3D bin model in the two loca-
tions that best match the ground-truth position. (d) Bins projected using camera
and deployment parameters. These are the h mappings of the two peak bins of
the motion histogram.

compared to the typical ceiling height [Fig. 8(a)], this must be
taken into account for our setup. The top camera in the Fig. 8(b)
produces very distinct images for each of the people depending
on their distance from the center axis of the camera: people near
the center of the image appear as seen from the top, while those
at the edges are seen diagonally from the side. Hence, the square
histogram bins yield good results for subjects near the center of
the image, where there is an approximate top-view, but not so
much as people wander toward the image edges.

Accounting for this, a human model is derived from a 3-D
object projected into the image plane using the camera’s in-
trinsic calibration parameters. We take a rectangular cuboid as
the 3-D model [Fig. 8(c)], with width and height taken from av-
erage human measurements. The model’s image is calculated
by applying geometric optics equations in conjunction with the
Brown–Conrady distortion equations [22] to the coordinates of
each of the cuboid’s corners. The projections of the models onto
the image plane are saved as a boolean bitmaps, which together
make up the bin-to-image-area mapping . The mapping is
computed in a similar fashion. The resulting bins provide a more
accurate model as can be seen in Fig. 8(d). The motion his-
togram can, then, be constructed as follows: for each bin in
the histogram, the 3-D model is shifted by an amount and the
value of at is mapped to the area within the projected
image of the cuboid: . Using this model, the his-
togram parameters and can be measured in real-world units
(such as cm) rather than pixels, making them more intuitive.

V. CAMERA-NODE LEVEL COUNTING

The motion histogram is designed to detect and locate
moving objects. Thus, so long as none of the objects in the
camera’s FOV stop moving, the number of peaks in the his-
togram should correspond to the number of people in the room.
However, when people stop, something must be done to keep
their location consistent. For this reason, we further process
with a standard tracking algorithm the locations detected with
the motion histogram.
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The tracking problem consists of labeling each detected ob-
ject with the same unique ID in all frames where the object is
present. However, for the purposes of this discussion, we relax
the required length of the unique ID, since our tracker is em-
ployed mainly as a “stopping” detector. For this reason, if an
ambiguous situation takes place (two people crossing paths, for
example), the tracking algorithm is allowed to assign new IDs
to each person involved in the ambiguity.

For these reasons, and given the power and computational
limitations of sensor node platforms, the tracker we employ does
not filter the sensor data with a Kalman or particle filter. Instead,
the approach presented in the remainder of this section is based
on bipartite graph matching, such as in [23], [24]. Compared
to the lightweight tracker used in our previous work [2], our
current tracker replaces the use of a histogram feature (peak
height) with an image feature (color histogram). This aims to
increase the robustness against “stopping,” as is described later
in this section.

Our tracker works as follows: at each time instant, the algo-
rithm takes as input the set of all peaks from
the motion histogram and the set of all people
detected at the previous time step. Note that we denote vari-
ables from the previous time instant with a prime. The variable

is the number of peaks at the current frame, while
is the number of detected people at the previous

frame. A complete bipartite graph can be
generated, where the weight of each edge is given by a function

. Then, the purpose of the tracker is to se-
lect a maximum weighted matching of , that is, to find the
combination of peak-to-person assignments that globally maxi-
mizes a given similarity function . The matching can be com-
puted using the Hungarian method [25], with complexity upper
bounded by (where is the number of vertices and
the number of edges). The method described in [26] lowers this
complexity to . In this paper, we use the
greedy method followed by the exhaustive approach to solve
conflicts.

Each peak is represented by a vector , and
each detected person by . These are the
person’s ID, their - and -location (in motion-histogram coor-
dinates) and color histogram of the area in the image where the
corresponding bin lies. This area is given by the bin-to-image-
plane mapping described in Section IV-B. The color histogram
utilized assigns each pixel in that area into one of 32 bins. These
features (location and color histogram) were chosen given their
positive contribution to detection rates in similar trackers [24].

The weight function is, then, defined as

where is the Euclidian distance normalized by the
maximum possible distance (image diagonal), is the
Bhattacharya coefficient, and is an empirical constant in the
interval [0,1]. At this point, an additional constraint is used:
people are not allowed move a distance greater than
from one frame to the next for them to be properly matched.

Given the and of the histogram in our deployment, this al-
lows people to move at a speed of at most 6.7 m/s.

The output of the tracker is the set of detected people
, for all . That is, each newly

matched person is represented by their new position and color
histogram along with their previous ID.

As described so far, the tracker assumes that the people in
the image are always in motion. This is due to a limitation of
the motion histogram, whereas people disappear if they stop
moving. To handle this situation, at each time instant a virtual
peak is added to . This virtual peak has the special prop-
erty that its location depends on which it is being matched
against. When the weight of edge is being calculated,

becomes , where the variable is the color
histogram of all pixels in the current frame that are in the set

. Thus, each detected person is also com-
pared to the area in the current frame that corresponds to their
old location. The used when weighting an edge of type
is chosen as a smaller number in order to emphasize the effect
of the color histogram over that of the location (which was just
copied from the detection on the previous frame).

VI. EXPERIMENTAL RESULTS

The accuracy of a histogram is typically measured with a
criterion such as the mean integrated squared error or the ex-
pected value of the norm. By minimizing this criterion with
respect to the histogram parameters, one is able to find the op-
timal parameters for a given distribution. However, it is not clear
what the distribution of above-threshold pixels for a moving
human is. Without this type of information, we optimize the his-
togram parameters empirically as described in Section VI-A. In
Section VI-B the motion histogram’s resolution is tested given
the parameters found in Section VI-A. Finally, Section VI-C
will describe our initial results with a people-counting sensor
network deployment.

A. Histogram Parameters

In order to find the best and sizes, the histogram was cal-
culated for a series of videos taken from a ceiling-mounted USB
camera. Each video shows a constant number of people, all of
whom are always in motion. The number of people in each video
ranges from 0 to 5. For each frame where the number of his-
togram peaks does not match the number of people in the room,
an error counter is incremented. The best histogram structure is
chosen as the one that provides the least amount of errors (lowest
valued counter). Fig. 9 shows the effect of varying for a fixed

. Meanwhile, Fig. 10 is the result of varying while
holding at 50 cm. Both plots were generated using the 3-D
bin model, with the cuboid’s height set to 170 cm. Since there
were no false positives when nobody was in the camera’s FOV,
the plot for zero people has been omitted from the figure.

The plots in Figs. 9 and 10 show the detection capability of the
raw histogram output, before using any tracking or employing
any other features. In these conditions, the histogram peaks cor-
rectly detected the number of people over 60% of the time for

cm cm and up to four people. The optimal bin shift
is found in the interval cm cm . The room where
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Fig. 9. Effect of varying the bin width w in the 3-D bin model. The value of �
was kept at 15 cm. The y-axis shows the number of detection errors, normalized
for easier comparison between experiments with different numbers of people.

Fig. 10. Effect of varying the model shift � in the 3-D bin model. The width
was kept at 50 cm. The y-axis shows the number of detection errors, normalized
for easier comparison between experiments with different numbers of people.

these experiments were performed has dimensions 9 m 5 m,
with a ceiling height of 3 m. The entire floor was covered by a
single camera node with 162 wide-angle lens mounted on the
ceiling. If the usable field-of-view is defined as the one where a
person is seen in their entirety, then the dimensions get reduced
to around 3.2 m 2.4 m. The people in the room were asked
to stay within those bounds, but, in the experiments with five
people, they often moved outside due to space constraints. This
is reflected in the plots, where the five-person detection results
show much higher error rates than the others. Again, it should be
emphasized that this is the raw output of the motion histogram.
Normally, this is coupled with additional data modalities to fur-
ther improve the results. This is done in the tracker explained in
Section V by incorporating the color histogram information.

The shape of the plot in Fig. 10 reinforces the decision to use
a histogram instead of a convolution. It is clear that small bin
shifts are desirable given that they produce histogram modes
with smaller localization error. However, those histograms are
also very prone to false positives, as discussed in Section IV-A.
This effect is shown in the figure, where error rates are high for
small bins, then sharply decrease for midrange bins and increase
again for larger ones.

For the rest of this paper, we chose cm and
cm, since they are the largest values in the optimal ranges dis-
cussed above. By choosing the largest values we aim to increase
robustness to false positives in situations where a person is not
standing up. With these histogram parameters, the histogram
partitions the image into 50 cm 50 cm areas, shifted by
cm. Using these values, our tests where people are allowed to sit
or lie down showed zero false positives, even though the cuboid
utilized is a model of a person that is standing up.

B. Histogram Resolution

We tested the histogram’s positional accuracy by having two
people walk toward one-another and meet at the center of the
image. This was captured by a single camera, in five different
runs. The histogram was able to differentiate distances of up to
15 cm 100% of the time. This resolution greatly suits the as-
sisted-living scenario, where the main interest is in the logical
spacial location (such as “on the sofa,” or “by the stove”), in-
stead of more precise coordinates. The same test was performed
for locations increasingly farther from the center. The result was
the same for distances up to 1 m from the image center (66%
of the usable area). At that distance, although the histogram
at times produced a single peak for both people, the tracking/
counting algorithm was able to disambiguate them. At the far-
thest position where one is fully covered by the camera (1.5 m),
the algorithm missed around 42% of all detections. We believe
there is room for improvement in those conditions, by utilizing
a better tracker. The histogram achieves its best precision at the
center two-thirds of the image, since when people walk closely
and side-by-side near the image edges, occlusion often occur.
Near the center, the maximal accuracy (15 cm, given that
cm) was achieved on five runs of parallel-walking tests (where
two people walked side-by-side in different locations). Addi-
tionally, on the experiments where the two people crossed paths
from different angles, the tracking algorithm was able to keep
the correct count and locations regardless of distance from the
image center. This is probably thanks to the small duration of
the occlusions in this type of experiment. All experiments in this
section were performed offline on a desktop computer, using a
Python implementation of the algorithms.

C. Network Implementation

We implemented the motion histogram and counting algo-
rithm in a sensor network composed of multiple Intel iMote2
sensor nodes. Each node is suited with a custom-built camera-
board (Fig. 1) that contains an OmniVision OV7649 imager.
The nodes acquire images at 320 240 resolution, downsample
them to 80 60, then run the algorithm described in Fig. 6. The
network was time-synchronized at boot-time using a broadcast
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Fig. 11. Snapshot of the real-time visualization GUI: a composite of pretrans-
ferred images from all six nodes is used as the background where each detected
person’s locations is overlayed (blue circles). In the snapshot above there are
three people in the scene. An orange circle is placed at each node’s location,
with the node IDs also displayed. The numbers on the blue circles are each
person’s temporary ID assigned by the tracker. The count reported by the base
is shown in the top-left corner of the image.

from the base node. The mappings and are precomputed and
kept in the node’s memory for fast operation. For each frame,
the number of detected peaks along with a timestamp are
recorded into a small buffer. For visualization purposes, this
buffer can be wirelessly transmitted to the base when full or after
a timeout—whichever happens first. This allows people’s posi-
tions to be verified in real time with a GUI on the client desktop
(Fig. 11). This entire process repeats at a frame rate of Hz
when the processor is configured to run at 208 MHz. Local
counts for each node are transmitted whenever they change. The
base station aggregates the counts and reports the total count to
the gateway computer.

The nodes are placed on the testbed structure on the ceiling
of our lab, where they are a single hop away from their base, in
a star topology. Given the ceiling height at the lab (240 cm) and
the presence of cubicle walls, six nodes are required to cover the
entire area. In this configuration, each node has a usable FOV
of approximately 3 m 2 m. The node positions are chosen to
minimize field-of-view overlaps, and the images they acquire
are cropped until the overlap is virtually zero. This way, we
avoid most of the correspondence issues to focus on histogram
and counting performance. Moreover, given the nonoverlapping
FOVs, the system described here can be effortlessly mapped
onto a tree topology. In this configuration, each node sums the
count of its children, adds its local count and reports the value to
the parent. This can repeat periodically (such as with [27], [28]),
or only when the new local count differs from the previous, such
as in [29].

For the experiment, people walked around the testbed through
every node’s FOV. Five runs were performed. The people were
allowed to stop at will, as well as to sit down and stand up.
Experimental runs were recorded with one to five people in
the covered area. The results range from 92.9% correct detec-
tions when a single person was in the room, to 64.3% for five
people, as shown in Table I. A close examination of the peak

TABLE I
NETWORK IMPLEMENTATION RESULTS

location data has shown that most errors can be attributed to
people temporarily walking between or outside FOVs. Occlu-
sions started to become an issue as the number of people in-
creased, but since most occlusions were brief, the tracker was
able to correct the vast majority. Other sources of error are small
offsets in time synchronization between sensor nodes, which
at times caused the system to count the same person twice for
the same wall-clock instant. Hence, better results can be imme-
diately achieved by implementing a time-synchronization pro-
tocol such as [30]–[32].

VII. CONCLUSION

We developed an algorithm that uses a motion histogram to
detect, count, and localize people. The algorithm is lightweight
and operates in real time on wireless sensor nodes. Through the
use of low-power AER motion cameras, the overall computa-
tional complexity can be further reduced, which in turn allows
simpler processors to be employed, lowering the system’s power
consumption. As there is no calibration step that must be done
on-site at the time of deployment, the system can quickly scale
by just adding more nodes. The only calibration requirement
is that the intrinsic parameters of the camera must be approx-
imately known in the case where wide-angle lenses are used.
When all lenses used are the same model, the intrinsic calibra-
tion only needs to be performed for one camera, and the param-
eters can be reused for all nodes.

We implemented the motion histogram and the tracking algo-
rithm described in Section V on sensor nodes, which transmitted
their detected person-count to a base for aggregation. The net-
work requires nonoverlapping cameras, but a possible direction
for future work is to exploit FOV overlaps for increased robust-
ness to occlusions. A more extensive evaluation of the network
and the sources of errors in the algorithm is currently taking
place.
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