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ABSTRACT
Although imaging is an information-rich sensing modality,
the use of cameras in sensor networks is very often prohibited
by factors such as power, computation cost, storage, commu-
nication bandwidth and privacy. In this paper we consider
information selective and privacy-preserving address-event
imagers for sensor networks. Instead of providing full images
with a high degree of redundancy, our efforts in the design
of these imagers specialize on selecting a handful of features
from a scene and outputting these features in address-event
representation. In this paper we present our initial results
in modeling and evaluating address-event sensors in the con-
text of sensor networks. Using three different platforms that
we have developed, we illustrate how to model address-event
cameras and how to build an emulator using these models.
We also present a lightweight classification scheme to illus-
trate the computational advantages of address-event sensors.
The paper concludes with an evaluation of the classification
algorithm and a feasibility study of using COTS components
to emulate address-event inside a sensor network.

Categories and Subject Descriptors: C.2.4 [Computer-
Communication Networks]: Distributed Systems

General Terms: Algorithms, Measurement, Performance,
Design, Human Factors, Theory

Keywords: Camera Sensor Networks, Imager Sensor Net-
works, Address-Event

1. INTRODUCTION
Camera sensor networks are analogous to having eyes every-

where. They provide an information-rich sensing modality
that can offer quantitatively and qualitatively better obser-
vations than other simpler sensors. Their deployment and
use however also gives rise to numerous challenges and reser-
vations. Cameras, more than other sensors, violate privacy.
From an engineering perspective, cameras are also resource
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hungry. The sensor themselves require significant power,
and the image and video sequences produced need addi-
tional processing, storage and communication bandwidth.
In many sensor network applications the source of this inef-
ficiency can be attributed to the fact that cameras digitize
a great deal of redundant information. This information
needs to be processed by complex algorithms and may have
to be communicated to a remote base station before a con-
clusion is reached. Although we expect that future fabri-
cation technologies will eventually mitigate the problem of
power by producing lower power versions of today’s cam-
eras, the complexity involved with processing large volumes
of visual information will still impose limitations to cost,
scalability and robustness of many types of sensor network
systems. Moreover, privacy issues raised by the deployment
of cameras in everyday environments, suggest that alter-
native technologies to traditional image sensors need to be
explored.

In this paper, we explore address-event image sensors as
a solution to these issues. We argue that address-event im-
ager design carries the potential to create ultra-low-power,
information-selective and privacy-preserving sensing modal-
ities that will result in simpler, yet more intelligent sensing
systems. Our goal is to mimic processes from biological sys-
tems to design sensors that capitalize on the advantages of
camera technologies. This will lead to the design of imagers
that measure parameters of interest from the environment
without having to acquire images. Such an approach will
filter out all the redundant information at the sensor level
extracting only a handful bits of useful information from the
visual imagery.

Before delving into the details of address-event sensors
and our platforms, we motivate our discussion by consid-
ering a sensor network in an assisted living application. A
sensor network is to supervise the activities of a person in-
side a house during the course of a day. In this application,
it is easy to imagine that a set of cameras deployed in every
room of the house could reliably perform this observation
task without requiring tagging the individual with sensors.
This sensor network will be required to continuously stream
video information to a base station where it can be fur-
ther processed by a human or a machine to generate alarms
of a certain set of events. In a similar application, a net-
work of custom designed address-event image sensors (and
possibly other small sensors) would be able to provide very
similar functionality, but would yield a much more light-



weight system. Instead of acquiring a set of images that
require substantial processing and communication, address-
event image sensors selectively extract and output only a
handful of features of interest from the visual scene such as
location, motion, direction of motion and lighting. These
features form a symbolic representation of the visual scene
that is much easier to process on a small sensor node. With
this symbolic respresentation, far less bandwidth is required
in order to communicate and reason about an activity with
other nodes. This allows in-network processing, giving sen-
sor networks the ability to provide meaningful services as
opposed to slighlty processed raw data.

In this paper we argue that AER image sensors are a
promising technology for sensor networks for several rea-
sons. In active state they only consume a few µW of power,
which is roughly three orders of magnitude less than to-
day’s small sensor nodes. An even more important feature
is that AER imagers use a fundamentally different computa-
tion model that is faster and more lightweight than conven-
tional image processing technologies. In AER imagers, com-
putation starts at the pixel level making the imager infor-
mation selective and event-driven. A pixel can be designed
to detect specific features (e.g light saturation, motion and
contours). Each pixel generates an event when its conditions
are satisfied, thus eliminating the need to poll the imager for
information. This also results in automatic rank encoding
of data, based on importance that provides opportunities
for designing new lightweight recognition algorithms that
can run on small sensor node processors. Finally, the AER
outputs of the sensors make it more challenging to recon-
struct an image. In fact we believe that it may be possible
to make image reconstruction substantially hard, thus mak-
ing our imagers more privacy-preserving than other conven-
tional cameras. The remainder of this paper is organized as
follows: in section 2 we provide an introduction to address-
event architectures. In section 3 we describe three camera
platforms for evaluating and modeling address-event sen-
sors. Section 4 explains how an address-event camera can
construct images. Section 5 describes a platform that em-
ulates the pixel level functions of an address-event camera,
and section 6 describes a basic pattern matching application
to demonstrate how address-event representation simplifies
processing requirements. Section 7 describes a simple exam-
ple on the use of address-event information inside the net-
work and compares the cost to the conventional approach.
Section 8 concludes the paper.

2. ADDRESS EVENT ARCHITECTURE
Address-Event Representation (AER) is a biologically-

inspired asynchronous protocol for encoding and commu-
nicating sensory data between a transmitting sensor and a
receiving processing unit [3, 4, 13]. An address-event (AE)
communication channel is a model of the transmission of
neural information in biological sensory systems. The AER
model trades the wiring complexity of biological systems
for the processing speed of integrated circuits. Neurons in
the human brain and in sensory pathways make up to 105

connections with their neighbors [9], a prohibitive number
for integrated circuits. Nevertheless, the latter are capa-
ble of handling communication cycles that are six orders of
magnitude smaller than the inter-event interval for a single
neuron or cell. Thus it is possible to share this speed ad-
vantage amongst many sensory elements, and create a single

communication channel to convey all the information to a
receiver. In the AE terminology, events are communication
packets that are sent from a sender to one or more receivers.
For an AE image sensor sensitive to light intensity, events
are signaled when individual pixels reach a threshold voltage
and request the bus for initiating a communication with an
outside receiver. An AE system is generally composed of a
multitude of basic cells or elements either transmitting, re-
ceiving or transceiving data. An event has the simple form
of the address of the transmitting element (hence the origin
of the term address-event). Several address-event imagers
have been proposed in the literature [2, 5–8, 10, 16, 19] since
the first devices by M. Mahowald and C. Mead [15].

A main advantage of AER image sensors is that they do
not need to be queried for information, instead they push
information to the receiver, once they have gathered it. This
feature is of extreme importance in data-driven sensor net-
works, since image sensors can detect features of interest in
the environment itself and provide hardware triggers that
do not need to be polled for information. In addition, it is
common for AER sensors to automatically provide a rank
encoding of data, based on importance. In an AER im-
age sensor sensitive to light intensity, the brightest pixels
will generate events first and more frequently than other
darker pixels, thus the data from these pixels will become
available immediately to a receiver [6, 8]. In an AER image
sensor sensitive to motion, only pixels that see a change in
light intensity will generate events [10]. Therefore, AER im-
age sensors can provide compression and reduced latency of
response of a recognition system by transmitting only the
relevant information and ranking it so the most interesting
data will be prioritized. This way of encoding information
is the basic building block of a sensor network able to detect
complex features in a scene, like behaviors [21].

Our group has designed and fabricated four generations
of AE image sensors sensitive to light intensity [5–8]. Our
work on image sensor networks has demonstrated the feasi-
bility of wireless communication of visual information with
very small bandwidths [20]. Within this publication we
are employing our forth generation AE image sensor, the
ALOHA imager [20]. It is composed of four quadrants of
32×32 pixels and is able to generate 10,000 events in 1.3s
with a power consumption of 6µW per quadrant. These
AE image sensors provide significant advantages when com-
pared to commercial off-the-shelves (COTS) camera mod-
ules. Some of these advantages are: low-power consump-
tion, high dynamic-range, native digital output, smart-pixel
architectures [8].

3. EXPERIMENTAL CAMERA
PLATFORMS

To experiment with the use of address-event cameras in
sensor networks, we have created three different camera sens-
ing platforms. Each platform is built on top of the XYZ sen-
sor node [12]. XYZ uses an OKI ML67Q5002 processor that
features an ARM7TDMI core running at 58MHz and a wide
variety of peripherals. The processor has 32KB of internal
RAM and 256KB of FLASH. An additional 2-Mbit memory
module is available on-board. The node exposes most of the
processor pins through 2, 32-pin headers, that allowed us to
build custom interfaces with different cameras.

The first platform is an XYZ sensor node with the ALOHA



Figure 1: The XYZ sensor node interfaced to the
COTS camera module from Omnivision (left) and
to the ALOHA image sensor (right).

image sensor (Figure 1, right). The interface of this camera
and the method of image acquisition is described in detail
in the next section.

The second platform, shown in Fig. 1 (left) is an XYZ sen-
sor node with an off-the-shelf OV7649 camera module from
Omnivision [17]. This sensor can capture images at VGA
(640×480) and QVGA (320×240) resolutions and also sup-
ports a windowing function that allows the user to acquire
images at different resolutions by defining a window on the
image plane. Data transfer between the camera and XYZ
takes place over an 8-bit parallel port and DMA. At a QVGA
resolution, the XYZ can acquire 4.1 frames per second. We
use the platform at a 256× 64 resolution, in which multiple
frames can be stored onto the on-board SRAM. The XYZ
memory allows the storage of 1.7 16-bit color frames, or 3.4
8-bit color frames or 27.3 1-bit (black and white) frames in
QVGA resolution. At the reduced resolution of 256 × 64,
the number of frames that can be stored is 4.6 times higher.

The third platform consists of a software emulator of AE
imagers. It allows quick simulation of AER imager proto-
types, as well as the development of algorithms for these
prototypes before they are even fabricated. The software is
written in Visual C++ and runs under Windows. It takes
an 8-bit grayscale input stream from a COTS USB camera
and outputs a queue of events to a text file. Additionally, an
image may be displayed by constructing it from the output
events.

The role of each of these plaforms will become more ap-
parent in the sections that follow. In section 4 we use the
first platform to describe how ALOHA can acquire images
and in section 6 the same platform is used to study how
AER can be exploited to draw conclusions about the visual
scene. In section 5, the third platform is used to model and
evaluate the architecture of AE imagers. This platform has
the capability of mimicking the functionality of an AE im-
age sensor and at the same time it can acquire conventional
images that we can use as ground truth in our expriments.
The second platform uses the results of modeling and AE
recognition to allow us to experiment with AE concepts in
the context of a WSN testbed.

4. IMAGE ACQUISITION AND
COMMUNICATION

The events generated by the ALOHA sensor correspond to
a specific amount of light collected by any of its pixels. That
is, pixels collect photons in a capacitive tank and generate an
integration voltage. Once this voltage reaches a threshold,
an event is signaled and the ALOHA outputs the X and Y
coordinates of the pixel generating the event.

Figure 2: Address-Event Representation: once an
event is generated, the address of the generating
pixel is latched and Req goes high. The AE sensor,
then, waits for an Ack signal from the receiver before
sending another event.

Once an event is generated, the ALOHA latches its ad-
dress onto a 10-bit bus and sets the request bit (Req) high. It
will only lower the request and wait for another event after
the acknowledge bit (Ack) is raised by the receiver (Figure
2). The ALOHA image sensor uses the simple ALOHA ac-
cess technique to transmit individual events to a receiver [1].
While the ALOHA access technique does not make effi-
cient use of the channel capacity and generates collisions
between events, it simplifies enormously the implementa-
tion of the access circuitry and reduces the latency of com-
munication [4]. Given that the speed of modern integrated
circuits allows serial channels with rates of multi-gigabit per
second, the low throughput is justified and can be traded for
high-speed and low-power [4].

Each pixel in an AE imager can be seen as a clock with
its own frequency and phase. In the ALOHA, the frequency
of events generated by each pixel depends on the intensity
of the light illuminating each pixel. Strong lighting makes
a pixel generate higher event rates while low lighting gener-
ates proportionally lower event rates. To obtain an image
array, the event frequency data must be converted into light
intensity. This can be done in two possible ways [8]:

• Histogram reconstruction: counting events in a specific
time interval and producing a histogram of the events
in the array.

• Inter-Event reconstruction: waiting for two consecu-
tive events for each or most pixels in the array and
then computing the inter-event time between such two
events.

An optional external timer can index each event and com-
pute the inter-event difference, which is inversely propor-
tional to the light intensity. An external buffer must hold the
latest pixel time index and the intensity value. The recon-
struction of images from the ALOHA sensor and other AE
image sensors is not trivial, as each pixel is acting as a sigma-
delta analog-to-digital converter [14]. A high-resolution timer
(up to 24 bits for hundreds of picosecond resolution) is re-
quired to obtain an instantaneous image for every event us-
ing the inter-event reconstruction. The timer indexes each
event and compares it with the last time an event at that
pixel was recorded. The difference is inversely proportional
to the light intensity. The buffer must hold the latest pixel
time index and the intensity value. For this reason, the sim-
pler implementation of histogram reconstruction is used in



Figure 3: A timeline of events as produced by a
theoretical 3× 3 imager similar to the ALOHA, and
the event queue that results from removing inter-
event timing information.

our research. Histogram reconstruction uses an array to in-
crement the pixel values. The size of the array is identical
to the one used by COTS cameras, and therefore does not
increase the complexity of the visualization program.

It is important to point out that AE image sensors are
not generally meant to be used as digital cameras, or to
take snapshots. Instead, they are designed to extract infor-
mation from a scene in AE for further processing. While
traditional image sensors provide data in the form of an ar-
ray after a specified time interval, AER sensors provide a
non-deterministic number of events per time interval. The
concept of a “frame” does not immediately apply to AER
imagers since the event data flows continuously. Therefore,
the quality or the complexity of image reconstruction is not
important for our final goal, which is to design an image sen-
sor network capable of extracting complex behaviors from a
scene. In the development of our research, we use recon-
struction of images to provide insight on the operation of
the AER sensors in a real sensor network deployment, not
for processing.

5. ADDRESS EVENT CAMERA
MODELING

While prototyping with COTS cameras provides fast turn-
around times in sensor network deployments, the design and
fabrication of a custom image sensor requires at least two
months. To combat the problem of slow deployment of each
generation of custom cameras, we have designed a platform,
described in this section, for emulating AE image sensors.
The goal of this emulation is to create a flexible infrastruc-
ture for exploring new designs of AER imagers. To test
these designs in a networked setup, this emulation platform
outputs data using address-event representation. The emu-
lation algorithm was implemented as a PC software for use
with live video input from a COTS camera. Other emulation
algorithms have been proposed [11] for synthetic AER gen-
eration, but execution speed quickly becomes a constraint
when implementing those in software. Here we briefly de-
scribe the algorithm we use to model AER imagers.

5.1 AER Conversion
Consider an 8-bit grayscale input image from a conven-

tional camera. In order to convert the brightness of each
pixel into a frequency of events, the following formula may
be employed:

Figure 4: Comparison between the output of the
AER model and that of the ALOHA imager.

fi = fMAX × Pi

255
(1)

Where fi is the number of times the i-th pixel will appear
in the train of events, given that its grayscale value is Pi.
This value is normalized by 255, the maximum grayscale
value an 8-bit imager can hold. The quantity fMAX is a
property of the AER imager being simulated. It expresses
the maximum frequency that can be achieved by a pixel in
the simulated imager.

As an example, for an intensity image the integration time
∆tint of one pixel is given by equation 2, where Cint is the
integration capacitor, ∆Vint is the integrator voltage swing,
and Iph is the photocurrent impinging the pixel [7, 8].

∆tint =
Cint∆Vint

Iph
(2)

With a value of Iph of 1pA in indoor lighting conditions,
and a Cint of 100fF and a ∆Vint of 1V we obtain integra-
tion time of approximately 0.1s or 10Hz per pixel. This is
the fMAX for this scenario. In a 32×32 image sensor the
agglomerate event-rate is thus approximately 10KHz. This
equation can be used to calculate an average event rate per
frame and thus it can be used to represent time within our
model.

These frequencies can, then, be used to populate a time-
line where the address i is uniformly distributed according
to the frequency fi from equation 1. The timeline accu-
rately portrays the series of events produces by all pixels in
the image, carrying the information regarding the order as
well as the timing between any two events.

When employing histogram reconstruction to display im-
ages from an AER train, an image can be reconstructed in
one of two ways: by displaying the histogram for all events
within an specific period of time; or by displaying the his-
togram of a specific number of contiguous events. When
employing the latter, the timing information from a train of
events is irrelevant. What is more, it is likely that sensor
nodes equipped with AER sensors will be programmed to
discard this timing data due to computation and cost con-
straints. Therefore, by employing an algorithm that does
not calculate event timing, faster AER synthesis is possi-
ble without significant loss. Since events are expected to
be relatively scarce in time, it is desirable to find an algo-
rithm that produces an event queue as opposed to a timeline,
which contains entries for when no event has been signaled.
Figure 3 illustrates this.

The algorithm employed for creating an event queue with-
out inter-event timing is as follows. The number of events in
an incoming frame is calculated from the fi’s as found from



Figure 5: Block diagram of AER emulation.

equation 1. The program iterates through the entire image
n times, until all events are extracted from it. The i-th pixel
is entered into the event queue if the following condition is
true:

n mod
PMAX

Pi
= 0 (3)

Where PMAX is the grayscale value of the brightest pixel
in the image. This condition ensures that the brightest pixel
is entered into the queue in every iteration n. Similarly, at
every even iteration (2n) any pixel with half the grayscale
value of the PMAX is entered. And so on. This way, each
pixel is indeed entered with a frequency proportional to its
brightness. Figure 4 provides a comparison of the model
simulating an ALOHA imager against the output of the
ALOHA itself.

5.2 Building an AER Emulator
Using the model described above, it is possible to build a

real-time AER emulator using off-the-shelf hardware. Fig-
ure 5 describes this process. An image stream from a COTS
camera can be filtered through a pixel behavior model which
utilizes conventional vision algorithms to mimic different
types of feature-detecting imagers. The filtered image is
then converted into an address-event stream, which is the
output of the emulator.

To simplify experimentation with different types of AER
imagers, we developed a software AER emulator as described
in figure 5. It runs on Windows 2000 or newer, and is avail-
able for download at http://www.eng.yale.edu/enalab/

projects/AERnets.html. It receives a live feed from a COTS
USB camera and, after additional processing such as extrac-
tion of motion or edge data, converts it to AER. The user
may chose whether to display the resulting image, save as an
AVI file or as an event queue text file for use in a program
such as Matlab.

Several parameters are tweakable at run-time allowing ba-
sic image processing utilities such as thresholding, grayscale
clipping and image resampling, allowing different imager ar-
chitectures to be emulated. Additionally, the parameter
fMAX is user-selectable in order to allow simulation of dif-
ferent pixel hardware properties. Two variables, chaosin

and chaosout are also included to dictate the probability
of an event randomly entering or leaving the queue. This
simulates the address bus contention issues that some AER
imagers have when colliding events simultaneously request
the data bus.

Figure 6 shows snapshots of the output of the program
when emulating three different AER imagers: a motion de-
tector, an edge detector, and a centroid detector. The im-
ages were formed using histogram reconstruction from 400,
400 and 1 event, respectively. The centroid detection as-
sumes a single moving object in a simple background envi-

ronment. The centroid is calculated from a time-differenced
image which, for illustrative purposes, has been superim-
posed onto the example pictures. Given the number of pix-
els in the examples, 128×96, this implies bandwidth sav-
ings above 94% for transmission of the raw imager data
(128× 96× 8 = 98304 versus 400× (7 + 7) = 5600 bits).

Figure 6: Emulation of different types of AER im-
agers. The resolution used for these examples is of
128×96 pixels.

6. RECOGNIZING PATTERNS WITH AER
In this section we demonstrate the efficiency of AER on

the node-level using a simple application. We describe an
algorithm that can recognize one of four letters in an im-
age given a small set of events, as schematically depicted
in Figure 7. Black-and-white templates were manually gen-
erated for the capital letters A, C, O and Q. These were
specifically chosen to illustrate the system’s capabilities at

Figure 7: High-level overview of image recognition
problem.



disambiguating between symbols as similar as the letters
C, O, Q, compared to the case when templates are highly
distinct (as with the letter A versus the three others). If a
similar approach were to be implemented using a traditional
non-AER imager, the following steps would be necessary:

1. Capture a frame into memory
2. Process the frame pixel-by-pixel to extract features
3. Compare the features against a database

With address-event imaging, these steps reduce to:

1. Process event
2. Compare data against a database

Here, item 1 is usually a matter of incrementing a his-
togram, since the AER nature of the sensor by definition
provides feature detection and extraction. Notice that, in
AE, there is no step to capture an event, because this hap-
pens by initiation of the camera itself, and is usually tied
to an interrupt, thus requiring no effort on the part of the
micro-controller.

Figure 8: Matching an incoming event (top left)
against the templates A, C, and O. In this case, the
probability of the subject being a C or an O is higher
than that of being an A.

upon reception of an event :8>>>>>>><
>>>>>>>:

x← event.x
y ← event.y

for each template[i]

8><
>:

if (x, y) ∈ template[i]
then template[i].score + +

Check if winner ()
Check if should give up ()

Figure 9: Pseudocode for the letter recognition ap-
plication.

In the case of the ALOHA, an event is generated as soon
as a pixel gathers a certain amount of light. Therefore, one
way to process the events is to check whether the x, y co-
ordinates of each incoming event are present in any of the
templates in a database. If the coordinates of an event pos-
itively matches that of a pixel in a template (Figure 8), the
chances of that template representing an actual feature in
the captured subject are increased. Therefore, that tem-
plate’s score is incremented accordingly. This is represented
in pseudo-code in Figure 9. Note that, for simplicity, the
templates used for this project consist of 2-color masks, as
other masks with more shades were found to produce sim-
ilar results. Using a terminology analogous to that of the
board-game Battleship, an event is said to be a hit for a
certain template if that template’s pixel at the address of
the event is white. Similarly, a miss denotes events whose
corresponding pixels are black in the given template.

Given that the letter C is a subset of the letter O, most
every hit on template C is also a hit on template O, causing

their scores to be very close when the subject to be recog-
nized is the letter C. Moreover, taking into consideration the
events generated by dark pixels – which, although less fre-
quent, are still highly abundant – it is clear that template
O would almost always win against template C (Fig. 10).
This situation characterizes a false hit, and it happens often
when a template contains a major portion of another.

Figure 10: Left: simulation of the first 49 events cap-
tured for a noisy subject consisting of the letter C;
Middle: hits on template C; Right: hits on template
O. If hits had the same weight for all templates, O
would have be incorrectly recognized.

For the purpose of correcting these unbalances, we define
the rank ri of a template Ti as the number bmax of bright
pixels on the brightest template (the template with the high-
est number of white pixels) divided by the number of bright
pixels on the current template, bi.

ri =
bmax

bi
(4)

Given a subject consisting solely of randomly distributed
noise, the fraction (ri)

−1 can be interpreted as the hit proba-
bility of the current template, normalized against that of the
brightest template. And so, ranks work by taxing templates
proportionally to their brightness in order to equalize their
odds. Ranks can be into account by employing a weighted
sum approach to compute scores, as shown by the algorithm
in Figure 11.

In case one of the scores overflows or when the number of
collected events reaches a predefined upper-bound, the algo-
rithm should restart itself. This helps reduce false alarms,
that is, the incorrect recognition of a feature that is not
present in the scene. A winner Ti is declared when the two
following inequations are simultaneously true for its score
si:

si > sj

si − s` ≥ K × rmax

where s` is the second largest score amongst all templates,
and K is an empirically chosen constant. The first condition
assures that the winner has the highest of all scores, while

upon reception of an event :8>>>>>>>><
>>>>>>>>:

x← event.x
y ← event.y
for each template[i]8><
>:

if (x, y) ∈ template[i]
then template[i].score+ = template[i].rank

Check if winner ()
Check if should give up ()

Figure 11: Pseudocode of the completed algo-
rithm: instead of incrementing scores equally, a
weighted system is employed. This allows for highly-
intersecting templates to be correctly identified.



the second one sets a minimum required margin Krmax be-
tween the winner and the second place. This margin is pro-
portional to rmax because that is the maximum amount by
which a score may be incremented at a time, making K the
minimum number of events that need to differ between the
winner Ti and the second place T`.

7. EVALUATION
To demonstrate the benefits of AE Imagers, we evaluated

the pattern classification algorithm described in the previous
section. Also, to test the feasibility of using a sensor node
coupled with a COTS camera to emulate the behavior of AE
Imagers in a sensor network setting, we also characterized
the overheads associated with image acquisition, processing
and communication using our third platform, XYZ with an
OV camera module.

7.1 Pattern Recognition
To evaluate the pattern recognition algorithm, two sets

of images were used. The first was a set of four letters
A, C, O, Q. To obtain the statistics over a large number of
images we used the AER model we developed in section
5 to extract events from a set of images. These images
were slightly distorted in a photo-editing program, and 10%
Gaussian noise was added. The recognition results when at-
tempting to recognize 100 different instances of each letter
are summarized in Table 1.

Our algorithm required an average of 12.68 events to recog-
nize the letter A. This is because the intersection of template
A with any of the other templates is very small, and as a
consequence it does not take long for sA to gain a significant
margin over the other scores. Similarly, the letter Q, which
has the brightest template, is recognized after the collection
of an average of 346.67 events. This can be explained by
the use of ranks, which forces the system to acquire more
events in order to correctly disambiguate between Q and its
subset templates, O and C. Still, the maximum number of
events required to recognize the letter Q is 560, or roughly
half the number of pixels in the image. This test was meant
to demonstrate that advantage of prioritized data provided
by AER and did not considered image scaling. To ensure
that each imaged was centered we computed the centroid
of pixels for each image and shifted the image so that the
centroid and the center of the image coincide.

In our second test, the same algorithm was used to clas-
sify between six American Sign Language (ASL) signs. The
ASL sign templates used are and two reconstructed image
samples from ALOHA shown in Figure 6. For this test we
used platform 1 (XYZ + ALOHA). To ensure that the im-
age was centered, we used the first 1000 events generated by
the camera for centroid localization. After that we collected
60 trains of events from ALOHA, six for each sign and were
used to classify each gestrure. The classification results are

Figure 12: Templates used for recognizing ASL
signs, and two images reconstructed from experi-
mental ALOHA data.

shown in Table 1. The mean number of events required for
the recognition of one of the 6 signs was found to be 281.8.

Assuming 100 processor cycles per template are required
for each event on XYZ, these results show that the recogni-
tion of an ASL sign takes, on average:

1

57.6MHz
· 100cycles

template
· 6templates

event
·1281.8events = 13.38ms

This algorithm compares favorably to the traditional, non-
AER approach used in the evaluation of the Cyclops plat-
form from UCLA [18], where a few hundreds of milliseconds
are needed. This is because the complexity associated with
performing successive resource-hogging cross-correlations is
replaced by simple additions in the AER algorithm. What
is more, both algorithms show similar success rates.

Taking into consideration the average rate of events gen-
erated by the ALOHA for the type of subjects imaged in
this application, the recognition delay for an ASL sign adds
up to 4.88 s. Note that this time corresponds to the time
that is required to both acquire and process an image in the
case of traditional COTS cameras. This number depends
on the technology of the particular AER imager employed,
and next-generation imagers are being designed for optimum
event latency that will reduce the total time down to the or-
der of a few hundreds of milliseconds. Additionally, better
accuracy may be achieved by employing learning as a means
to automatically generate masks. Our group is also research-
ing imagers that measure different modalities of data from
a scene in order to leverage robustness and performance.

7.2 On-Node AER Emulator
An important aspect in the design and specification of

AE imagers for sensor networks, is the ability to emulate
the behavior of such imagers in a networked setup. This re-
quires the ability to run an emulator like the one described
in Figure 5 on a platform similar to platform 2 (described

Characters ASL Signs
Template A C O Q Sign 1 Sign 2 Sign 3 Sign 4 Sign 5 Sign 6
Minimum no. of events 8 20 42 62 142 137 43 189 106 91
Maximum no. of events 22 45 343 560 1142 755 67 1587 436 426
Average no. of events 12.68 30.5 192.76 346.67 447.3 296.5 53.3 480.6 228.5 184.6
Standard dev. 3.03 6.72 59.92 95.36 285.3 195.7 9.2 410.2 88.1 93.4
Accuracy 100% 100% 99% 99% 10/10 9/10 10/10 8/10 10/10 10/10

Table 1: Statistic for recognition of the four letters A, C, O, Q (left) and ASL signs (right).



in section 3). To determine the feasibility of this, we eval-
uated the ability of platform 2 to mimic pixel behavior and
run the AER model conversion. We used the emulation of
motion detection to benchmark our platform. The window-
ing feature of the OV camera was used to consider different
resolutions.

The motion detection emulation is performed in the fol-
lowing way:

1. A 16-bit YUV image is acquired by the camera us-
ing the DMA module on the XYZ sensor node. This
process takes approximatelly 200ms.

2. The 16-bit YUV image is converted to an 8-bit gray
scale image.

3. Consecutive 8-bit images are used in a simple differ-
encing algorithm that detects motion in the image co-
ordinates.

4. Finally, the 8-bit gray scale images generated at the
previous step are converted to 1-bit (black and white)
images using thresholding. The white pixels in these
1-bit images denote the presence of motion while the
black pixels denote the absence of motion. The im-
age coordinates of the motion event can now be easily
computed as the centroid of the image coordinates of
the white pixels.

Memory (Bytes) TX Time (s)

Resolution
Color depth (bpp) Color depth (bpp)
16 8 1 16 8 1

320× 240 153,612 76,812 9,612 115 57 7
256× 64 32,780 16,396 2,060 25 12 1.5
64× 64 8,192 4,096 512 6.5 3.2 0.4
32× 32 2,048 1,024 128 1.6 0.8 0.1

Table 2: Memory and transmission time requirements for
different image resolutions and color depths. Note that each
image is stored in the 2Mbits external SRAM.

The memory requirements for different resolutions and
color depths can be seen in Table 2. For the detection of
motion at the head level the 256 × 64 resolution was used.
The 2Mbit external SRAM on the XYZ sensor node allows
the storage of 8 16-bit color frames, or 16 8-bit color frames
or 127.7 1-bit frames in this resolution. Table 2 also shows
the average one-hop wireless transmission delay of an image
for different resolutions and color depths. Note that the im-
age transfer is made using a reliable protocol developed on
top of the IEEE 802.15.4 MAC running on the XYZ sensor
node. The transfer delay begins with the initial request of
the image and ends when the image has been succesfully
transmitted over the wireless link. The transmission times
reported in Table 2 include the overhead of the operating
system which is equal to 8 bytes per packet. No image com-
pression was performed in order to minimize the payload of
each packet sent over the wireless link.

The processing time requirements for each of the afore-
mentioned steps is shown in Table 3 for different image res-
olutions. The time that is required to run the Sobel edge
detection algorithm on the XYZ sensor node for an 8-bit
gray scale image is also shown. The times in these tables
show that the ARM THUMB core on the XYZ can cope
well with the image processing tasks at 64 × 64 and below.

The reported latencies indicated that it would be possible
to sample a COTS camera at 10 to 15 frames per second
and still be able to run an AER emulation mode. This task
becomes much more challenging at higher resolutions. This
can be solved by employing a more powerful processor and
additional memory. Of course, this is for emulation purposes
only. This would lead to the specification of an AER imager
that we will fabricate. A sensor node carrying such an im-
ager would only have to sustain the classification algorithm
and would be able to operate with a much smaller processor.

Our measurements also revealed some interesting prop-
erties about the ARM THUMB processor on XYZ as well
as the OV camera. Although the maximum DMA transfer
rate for XYZ was computed to be 3.01MHz, the maximum
DMA transfer rate between XYZ and OV was measured to
be 1.67MHz. This imposed an additional bottleneck on the
achievable frame rate. Furthermore, we noticed that when
we select to capture images from a subwindow on the OV
camera, the effective transfer rate also depends on the loca-
tion of the subwindow on the image.

Process type
Delay(ms)

320× 240 256× 64
16-bit YUV to 8-bit grey 108 23
16-bit RGB to 8-bit red 111 23.6
8-bit frame differencing 114 24.2
8-bit image thresholding 52 11.2

8-bit Sobel edge detection 3560 248

Process type
Delay(ms)

64× 64 32× 32
16-bit YUV to 8-bit grey 6.4 1.5
16-bit RGB to 8-bit red 6.5 1.6
8-bit frame differencing 6.6 1.6
8-bit image thresholding 3.1 1.8

8-bit Sobel edge detection 65 15

Table 3: Different image processing times for each
of four different image resolutions on the XYZ sensor
node.

8. CONCLUSIONS AND FUTURE WORK
In this paper we motivated the use of AE imagers in

sensor networks as an appealing technology with energy,
computation and privacy advantages over conventional im-
ages. We presented a simple methodology for creating a
model for AER and how to use it to build an emulator of
AE Imagers using COTS components. Our evaluation has
shown that the prioritized nature of AER outputs is very
promising. The example classification algorithm showed
that AER makes computation shorter and simpler without
requiring multiplications. In fact, the results of our experi-
ment suggest that small processors such as the popular At-
mel’s AVR128 or TI’s MSP430 could easily used for basic
pattern classification and tracking, a task that would be
much more difficult and resource consuming to perform us-
ing conventional scan sensors. The fact that these imagers
can extract measurement information without acquiring an
image also makes them privacy-preserving and more suit-
able for deployment in everyday life applications such as as-
sisted living. Making images very hard to reconstruct from
these sensors is an interesting task that should be further
considered. Other parts of our research are currently con-
sidering an architecture for using localized feature informa-



tion (such as that generated by AE imagers) at the net-
work level to infer more macroscopic motion behaviors [12].
In the imager hardware front, we have fabricated and are
currently testing a large pixel-count ALOHA image sensor.
The sensor, named ALOHAbig, is QCIF size (176 × 144
pixels) and was designed in a 0.35µm TSMC process. It
is based on the ALOHA design and consumes less than
3mW in preliminary tests. In addition, we are fabricating a
3×3mm motion detector chip with approximately 100× 100
pixels. The design is based on the differentiating AE im-
ager [10] and is targeted to ultra-low power consumption and
bias-less sensor networks applications. The software imple-
mentation of our AER emulator can be obtained at http:

//www.eng.yale.edu/enalab/projects/AERnets.html. In
the near future we expect to release wireless sensor node
versions of the emulator, followed by prototype versions of
the AER chips designed by ELAB at Yale.
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