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Abstract—We present an activity-recognition system for as-
sisted living applications and smart homes. While existing systems
tend to rely on expensive computation of comparatively large-
dimension data sets, ours leverages information from a small
number of fundamentally different sensor measurements that
provide context information pertaining the person’s location,
and action information by observing the motion of the body
and arms. Camera nodes are placed on the ceiling to track
people in the environment, and place them in the context of
a building map where areas and objects of interest are pre-
marked. Additionally, a single inertial sensor node is placed on
the subject’s arm to infer arm pose, heading and motion frequency
using an accelerometer, gyroscope and magnetometer. These four
measurements are parsed using a lightweight hierarchy of finite
state machines, yielding recognition rates with high precision and
recall values (0.92 and 0.93, respectively).

I. INTRODUCTION

Recognizing human activities around the house in a ro-
bust and practical way would be an asset for several home
monitoring applications. The main difficulty in recognizing
activities is that no matter the types or number of sensors
used, the measurement space is invariably overwhelmed by the
immensity of the state space of human activities. Starting from
a simplistic definition, activities can be described as sequences
of “actions” in time. These “actions” are atoms of motion
which include the person’s pose and small time-scale motion
primitives. Considering, however, that the human body has at
least 244 degrees of freedom [27], it is clear that acquiring and
processing this information to produce high-fidelity poses is
intractable, due not only to computational constraints of a real-
time embedded system but also to the sheer number of sensors
required to measure it. But that is only part of the problem.
It is also important to consider contextual information such as
setting (where does the action take place?), date/time, cultural
factors, and so on. What is more, the same underlying action
may be performed in many different manners. Hence, taken
in such a broad sense, activity recognition is a substantial
problem.

In this paper, we describe a prototype sensor network
that uses a person’s location along with minimal pose and
motion information to detect activities in a house, provided
the locations of objects and furniture are known. By using
an object-oriented hierarchy of Finite State Machines (FSMs)
augmented with time constraints we are able to detect common
household activities such as ‘cooking’, ‘eating’, ‘brushing
teeth’, and ‘fetching a glass of water’ in uncontrolled environ-
ments and with little computational cost. Where existing sys-

Fig. 1. Overview of our system and the associated coordinate systems.

tems tend to rely on expensive computation of comparatively
large-dimension data sets, ours leverages information from a
small number of fundamentally different sensor measurements.
From our experience with real-world camera sensor network
deployments [2], we have found that the largest obstacle
to activity recognition is the widespread presence of noise,
both due to measurement errors (leading to false-positives)
and to the interspersing of activities when multitasking or
changing plans. For example, when a person starts cooking,
then leaves to answer the phone, goes back to cooking, goes
to watch television, then finishes cooking and eats at the
table. This effect was visible in our previous work [10][11], in
which sequences of location symbols were interpreted using
probabilistic context-free grammars (PCFGs) to infer higher-
level behaviors. Although attractive due to their expressive
power and strong theoretical grounding, PCFGs have limited
noise tolerance without extensive training.

The first contribution of this paper is a system that uses
the person’s location along with a minimal number of pose
and motion measurements to detect human activities in un-
controlled, real-world scenarios. For this, context information
from a pre-annotated map is used to fill in the blanks from
the low-accuracy sensing. Observations of pose and motion
are abstracted into four components: body speed, arm tilt,
arm heading, and arm motion frequency. These are inferred
with an infrastructure of non-overlapping camera nodes along
with a single wrist-mounted inertial sensor node per person.
The second contribution of this paper is the development of
an object-oriented hierarchy of finite state machines that we
extend with time constraints in order to parse the noisy stream
of input measurements, with good demonstrated detection
rates. In this work we consider solely the single-person case,
given that multiple-person data can be separated using our
ongoing research in person-identification [20][21].



Fig. 2. Block diagram of the entire system. Measurements from the wearable sensor node are displayed on the left, while the centroids detected by the
camera sensor nodes are on the right.

II. BACKGROUND AND RELATED WORK

Traditionally, activity recognition has been almost exclu-
sively in the domain of computer vision. In that field, the most
common strategy is to detect poses as precisely as possible
for each video frame. This is sometimes done in a top-down
manner, with template-based approaches that employ holistic
image features [13], [7] or build spatiotemporal shapes from
silhouettes [4], [24]. Other times, a bottom-up approach is
used, detecting body parts to fit into a prior model of the
human body [14], [18]. Regardless of the approach, camera-
only solutions to activity recognition must take into account
occlusions and the view-variance of poses. Even when multiple
cameras or 3D constraints are used to mitigate these factors,
fundamental lower-level problems make most approaches in-
feasible for uncontrolled real-world scenarios. For example,
the background-subtraction algorithms that are often required
in preprocessing stages usually fail or adapt too slowly when a
person moves an object in the scene (such as a chair). For these
reasons, in this work we avoid relying on high-level inferences
from cameras, using them only to detect the subject’s position
and speed.

In recent years, however, the research effort in human
activity recognition has spread to a diverse number of fields.
Approaches generally break down into the extraction of mean-
ingful statistics from sensors, and the inference of high-level
activity information from the statistics. Various sensing modal-
ities and inference algorithms have been applied. Sensor types
range from location information from WLAN RF-signals [26],
to motion detectors, break-beam sensors, pressure mats, and
contact switches [23]. These usually extract only a rudimentary
amount of activity information due to the limited size of the
measurement space. Higher-level activity recognition schemes
have also been proposed, employing multiple sensors such
as accelerometers, gyroscopes, and magnetometers [12], [25],
[3]. In those papers, various inference techniques are adopted
such as linear classifiers [12] and support vector machines
[25]. A review of these methods can be found in [17].
However, systems that rely on multiple wearable sensors can
be cumbersome for the user, which is why we limit ourselves
to a single wearable node per person, placed on the arm. In
the future, our sensor node can be placed on a bracelet or
wrist-watch form factor.

Recently, RFID-based activity recognition has also been
proposed using Hidden Markov Models (HMMs) [15] [16]
[5] [26]. It is not hard to see why the HMM formulation
is such a popular choice in activity recognition: if activi-
ties are represented as sequences of states, then the activity
recognition problem can be described as that of finding the

most probable state given a sequence of observations. Yet the
Markov assumption (that only the last N states are required
to predict the next state) does not apply to human activities
when multitasking is a factor. That is, if a person interrupts
an activity to do a number of other activities, and then returns
to finish the interrupted activity, then the number of states
becomes unpredictable. What is more, although HMMs can
attain good noise-resilience through a learning procedure, the
learned model parameters are likely to be specific to that
person and/or house. For example, if the measurements are
composed solely of the person’s location in the house, the
likelihood of observing a ‘next to laundry machine’ location
while the person cooking is approximately zero except for
homes where the laundry machine is found in the kitchen.
Finally, in order to introduce time and context to HMM or
PCFG-based approaches, the state space must be augmented
to encompass the Cartesian product of all three states spaces
(the original state space, plus time and context state spaces),
which greatly increases the complexity of a solution that was
already computationally-heavy to begin with. In this paper,
we opt for a finite state machine approach similar to [19],
[1]. State machines are lightweight, human-readable and easy
to parse. However, as further detailed in Section VI-A, they
quickly fail in the presence of noise, leading to false-positive
detections. In this paper we describe a simple extension to
FSMs that utilizes intuitive time constraints to mitigate this
problem, with good results. As we will show, adding time
constraints to FSMs is natural and straight-forward, and leads
to noise-resilient activity parsing.

With few exceptions, the common theme with the existing
approaches is that activity recognition is attempted solely
based on pose or motion information — but not context.
What sets our approach apart is that we bypass the admittedly
challenging problem of extracting detailed pose information
from a scene. Instead we extract only lightweight pose and
motion properties and make use of context to counter-balance
the lack of sensing detail.

III. SYSTEM OVERVIEW

Our system consists of ceiling-mounted cameras nodes em-
ployed alongside a single wearable sensor-node. The cameras
detect and track the person, acquiring information about speed
and position relative to a map. Meanwhile, the wrist-mounted
inertial sensor node provides the angle of the arm with respect
to gravity (tilt) and to the local magnetic field (heading). The
overall setting is illustrated in Figure 1. Although the inertial
node is placed only on the person’s most dexterous arm, more
information can be gathered with the addition of a similar



Fig. 3. The power spectral density of the wrist acceleration can be used to
assist the differentiation between activities.

sensor node on the other arm. We have found, however, that
a single arm contains enough information to detect a set of
activities including ‘eating’, ‘cooking’, ‘cleaning’ and more,
as described in our evaluation (Section VII).

In this work, we define activities as sequences of actions,
and actions as pose transitions of short duration taking place
within some context. For this, at each time instant we combine
the inertial and camera data to generate an observation vector
whose components contain both pose/motion information and
location context. The observation vector is, then, used as input
for a hierarchy of state machines representing higher level
actions and activities.

IV. MEASUREMENT SPACE

For each time step, we extract an observation vector of the
following form:

z = [L, V︸︷︷︸
body

, P,D, F︸ ︷︷ ︸
arm

] (1)

where L and V are the location and speed of the person,
measured from the cameras, and P , D and F are the arm
pose, arm direction and arm motion frequency. All of these
are described nominally rather than numerically. That is:

V ∈ V = {‘moving’, ‘stopped’}
P ∈ P = {‘up’, ‘high’, ‘middle’, ‘low’, ‘down’}
D ∈ D = {‘North’, ‘East’, ‘South’, ‘West’}
F ∈ F = {‘high-freq’, ‘low-freq’, ‘stopped’}

Furthermore, the location L is given not in terms of
points in a coordinate system, but as high-level descriptions:
‘at the stove’, ‘at the kitchen sink’, and so on. Thus the
components of the observation vector z carry information
regarding context (the high-level location L), pose (P and
D) and motion (V and F ), albeit with low resolution.

The rationale for such a observation vector is that a large
set of actions can be performed with similar poses or motions,
but they differ in their focus. With eyes located on their front
side, people usually turn their bodies to face the object of their
attention, and due to their limited range of actuation, they
place themselves close to it (within arms length). Similarly,
since a large set of human actions involves handling objects
or manipulating devices, the location of the hands contains
invaluable information about the object onto which an action is
focused. In our system, the focus inferred from hand locations
is fused with prior knowledge of the location of furniture and
household utilities, which we refer to as context.

However, while it is relatively simple to obtain L (we
simply overlay the person’s coordinates onto a pre-annotated
building map), robustly detecting the location of the hands is a
challenging task. Instead, we obtain only an indirect measure
of the focus of activity through the vertical and horizontal
angles of the forearm. These angles are referred to as tilt
θ and heading φ, and are acquired using the accelerometer
and magnetometer on the person’s wrist, as described in
Sections V-A and V-B. Thus, two activities that can occur
in the same area, such as accessing the medicine cabinet and
using the counter below it, can be differentiated given the
person’s arm tilt. The heading, meanwhile, can be used to
filter meaningful area visits. For example, although a person
may pass in front of the fridge quite often, a meaningful visit
would require the person to extend their arm toward it.

Other than measurements of “focus of activity” (location
and arm pose), heuristic measures of “level of activity” are
used in the absence of more precise low-level motion infor-
mation: the body speed V and the arm motion frequency F .
As seen in Figure 3, the frequency components of different
actions can vary drastically. In some cases, such as ‘brushing
teeth’ versus ‘shaving’, the arm frequency can be the main
disambiguation factor.

Note that the measurements in z come from sensors with
quite different sampling frequencies. Rather than interpolating
the data into a common frequency, we update each component
of the observation vector asynchronously as soon as new
data is available. When this happens, an event notification is
generated by the system, and propagated through the activity
recognition FSM hierarchy. Meanwhile the components with
no new data retain their previous values. This event-driven
scheme lowers the data rate to a bare minimum.

V. DETECTING ARM POSE

For completeness, in this section we briefly describe the
process of calculating the arm tilt θ and heading φ, from which
the nominal values of pose P and direction D are extracted
by quantizing.

A. Tilt Detection

The typical MEMS accelerometer measures acceleration
through the displacement of a proof mass with respect to
frame that houses it. When a force is exerted on the housing,
the proof mass is displaced in the opposite direction. Due to



Fig. 4. The orientation of the accelerometer with respect to the world
coordinate system is given by two angles: the tilt, which is the angle θ between
the y axis and the gravity vector g; and the heading, which is the angle φ
between the projection of the y axis onto the horizontal plane and that of the
magnetic force vector H .

this, the output of the accelerometer contains an additional
acceleration component as an effect of gravity on the proof
mass — or, more precisely, from the normal force that is a
reaction to gravity. This additional component is present any
time the accelerometer is not in free fall. The following equa-
tion describes the output of the accelerometer mathematically:

ameas = g + amotion + emeas (2)

where ameas is the measured acceleration, g is the component
due to gravity, amotion is the acceleration of the accelerometer
in space, and emeas is a combination of accelerometer bias,
quantization errors, and zero-mean Gaussian noise. The g
vector, if correctly extracted from ameas, can be used to
calculate the tilt θ of the accelerometer using basic geometry
(Figure 4):

θ = arccos (ŷ · g / |g|) (3)

where the accelerometer is oriented so that unit the vector ŷ is
a unit vector that points toward the arm’s positive y direction
(Figure 1).

To find the tilt using equation (3) one must have a good
estimate of the gravity vector g. It is clear from equation 2
that when the person’s arm undergoing any motion the un-
known component amotion becomes an obstacle toward the
computation of g from the accelerometer reading a. However,
making use of the fact that g has fixed magnitude (except in
a free-fall scenario, which is out of the scope of this paper)
and that its orientation is a function of the rotation of the
accelerometer, equation (4) can be derived by incorporating
the rotation from gyroscope measurements:

ġ =

 0 −ωz +ωy

+ωz 0 −ωx

−ωy +ωx 0

 g (4)

where ωx, ωy , ωz are the angular velocities around the x, y,
and z axes of the target, measured by a gyroscope. The fusion
of accelerometer and gyroscope measurements to estimate
orientation is desirable because the errors in these two sensors
are independent. We use a Kalman filter based on equation (4)
to estimate g, as is common practice in the literature [28][6].

Although greatly minimized through the Kalman filter, the
estimated g still contains a strong residual component that is
correlated with amotion. This is the largest source of error in
the tilt computation, causing the estimate to deviate upon large
external accelerations. This results in the extraction of false-
positive arm poses P (which are quantized from θ) whenever
the person moves their arm abruptly. In Section VI-A we
describe a method of mitigating the effect of such false
positives.

B. Heading Detection

In order to obtain the direction measurement D, we first
compute the heading angle φ of the inertial node using a 3-
axis measurement H of the local magnetic field supplied by
an integrated magnetometer. Since the absolute heading with
respect to true North is not of interest in our application, in this
section the word “North” is used to indicate the local direction
of the magnetic field. The heading computation in this paper
assumes the local magnetic field is approximately constant
over time and space. From our experience, this assumption
should hold in typical assisted-living scenarios.

Except when measured directly on the equator, H tends to
tilt vertically, pointing down into the ground in the northern
hemisphere and up in the southern hemisphere. As such, to
find the local North a tilt-compensation method must be used.
We accomplish this by projecting H onto the plane tangent to
the Earth’s surface at the IMU’s location, which we call the
ground plane. The calculation is done in the following manner:

Hg = H − (H · ĝ)ĝ (5)

where ĝ = g/|g|. The heading angle is, then, the angle
between Hg and the projection of the ŷ unit vector onto
the ground plane, given that the y axis is parallel to the arm
(Figure 1). We project ŷ onto the horizontal plane in the same
manner as (5) to obtain yg . From here, the angle can be found
in the customary manner using the dot product:

φ′ = arccosHg · yg (6)

and the clockwise heading angle φ is given by verifying
whether yg×Hg points in against the direction of g, in which
case φ is 2π − φ′:

φ =
{

2π − φ′ if ĝ · (yg ×Hg) < 0
φ′ otherwise (7)

Note that when H ‖ g, the projection onto the ground
plane yields Hg = 0, and the heading is undefined. This is
not a problem since in these cases the heading angle loses
any physical meaning, as the arm must be pointing straight
up or down. We have found that the projection-based method
presented here produces better results than the rotation-based
method found the in the literature [6].

From the equations above, it is clear that the heading esti-
mate contains two sources of noise: one from magnetometer
measurements, and the other from the estimation of the gravity
vector g. We have found that the latter is the most severe,
causing the heading estimation to degrade in periods of strong



Fig. 5. Hierarchy of finite state machines that pertain to Cleaning Activity detection. As shown in equation (8), each non-terminal state also has an implied
expiry transition back to the start state.

Fig. 6. We detect activities using a hierarchy of finite state machines. The
input of each stage is the measurement vector z, the current time t, and the
outputs of the previous stages, the event stream A.

acceleration. However, since many arm actions culminate in a
period of low-magnitude motion, arm heading still proves to
contain useful information. Again, the false-positive directions
D detected by quantizing φ are handled through timing
constraints as described in Section VI-A.

As with the tilt-detection case, we use a Kalman filter to
smoothen the input signal before calculating the heading. In
reality, a single filter is used to estimate both the tilt and the
heading. For space considerations, we leave the Kalman filter
derivation out of this paper, as it can be readily found in the
literature [28].

VI. ACTIVITY RECOGNITION

We detect actions and activities (sequences of actions) using
a set of object-oriented finite state machines that run in parallel
with one another. The lowest-level inputs to this hierarchy
are the observation vectors described in the previous section.
Whenever an FSM runs to completion (reaching the state
Send), an output symbol is produced and inserted into an
output stream A, indicating that the corresponding activity
has been detected, and the state machine is reset back to
the start state Sstart. The output detections can, then, can be
used by higher-level FSMs to detect more complex activities.
This can be seen in Figure 5, where the transitions of the
‘Cleaning Activity’ FSM depends solely on the outputs of low-
level state machines. Each FSM starts at the state Sstart and
moves from state to state according to the transition function
α(Si, δti, z, A) where the parameters are: the current state Si,
the time spent in the current state so far δti, the observation
vector z, and the set A containing the activity outputs of the
lower layers of the hierarchy for the current time step. This is

shown in Figure 6. The hierarchy of FSMs runs in an event-
driven manner that propagates through the different levels:
whenever the input observation vector z changes, the 1st-level
FSMs are parsed, their outputs (if any) are forwarded to the
2nd-level FSMS, which are then parsed. The outputs of the
1st and 2nd levels are then input into the 3rd level, and so on.

A. Relevance period

In our experience, the stream of observation vectors of a
person in the course of an activity contains large amounts of
false-positive observations. As a consequence, it is common
for false-positives to randomly trigger transitions that incor-
rectly alter the states of one or more FSM. Given enough time,
there is a high probability that some FSM completely unrelated
to the person’s activity will run to completion, generating a
false detection.

We guard against this by introducing the concept of rele-
vance period. The relevance period (Ti) of a state Si is a user-
defined time period inside of which any action related to that
state must take place. Otherwise, after Ti seconds have gone
by all future actions are deemed to be unrelated to the current
state and the state machine is reset to Sstart. This decreases the
probability that noisy observations trigger unrelated transitions
and lead to false positive detections. In Figure 5, we show the
relevance period transitions as small gray arrows in each non-
terminal state. In our formulation, a parameter Ti is required
for every state Si, except Sstart and Send (terminal states).
The terminal states Sstart and Send are defined as having a
δt equal to ∞ and 0, respectively. Thus, for each transition
function α declared by the state machine developer, the system
automatically replaces it with a transition function α′ that
creates expiry transitions conditioned upon δti:

α′(Si, δti, z, A) =
{
Sstart if δti > Ti

α(Si, δti, z, A) otherwise (8)

B. Hierarchies and Object-Orientation

Figure 7 shows a state machine that is able to reliably
detect ‘cooking’ activity. This FSM contains a single non-
terminal state whose transitions serve solely to renew the
state’s expiration timer δti. The simplicity of the ‘cooking’
FSM comes from its dependence on lower-level FSMs to
detect ‘fetching food’, ‘heating up’, and ‘handling object over



Fig. 7. A simple state machine to detect cooking, used mainly with the
time constraints to assure the actions take place within sensible time intervals
of one another. In our experiments, every instance of cooking activity was
correctly detected.

surface’. The formulation as a hierarchy promotes a divide-
and-conquer approach, and allows for the organization of map
locations into classes.

Since similar actions can belong to different contexts (a
person can perform the ‘open’ action on a door as well
as a drawer), the predefined areas can be abstracted into
classes (e.g. ‘openable’) to produce more general activity
definitions. The class ‘openable’ may encompass all doors,
drawers, closets, fridge, and so on. Instead of defining an
‘open’ activity for each of those areas individually, a single
activity model is utilized which applies to everything that is
‘openable’. Moreover, higher specificity can be achieved using
subclasses: the class ‘container’ may be used for objects such
as closets and fridge, while only the latter may belong in
the subclass ‘food container’. This way, the ‘fetching food’
activity used by the ‘cooking’ FSM (Figure 7) can be specified
as a trip to a ‘food container’. This reduces the complexity of
the recognition layer while also making the activity models
more generic. If the same system is used on a different
home, one with an extra pantry, for example, the ‘cooking’
activity should continue to be recognized, so long as the extra
pantry is defined as belonging to the ‘food container’ class.
These classes of FSMs are themselves implemented using state
machines, and can be used to group locations and/or lower-
level FSMs.

Classes are implemented by creating a trivial state machine
containing only the initial and final states, Sstart and Send.
Then a transition to the end state Send is conditioned upon
the presence of any element from some set of locations or
activities. Hence, the transition function α from state Sstart

takes the following form:

α(Sstart, δtstart, z, A) =

 Send if L ∈ C
Send if ∃ a ∈ A s.t. a ∈ C
Sstart otherwise

(9)
where C = {c1, c2, ...} where ci is either a location (L) or a
lower-level activity (some a ∈ A).

An example of a class-definition FSM can be seen in the
bottom-right of Figure 5. That FSM defines the locations
‘kitchen counter’, ‘dining table’, ‘kitchen sink’ and ‘bathroom
counter’ as belonging to the class ‘surface’.

VII. EVALUATION

We recorded 40 traces where a person performed one of
eight activities in their home: cooking, eating, brushing teeth,

Fig. 8. Images taken with deployed camera sensor nodes with some of the
labeled areas shown. Left: bathroom. Right: kitchen.

using toilet (up), using toilet (down), cleaning, fetching water,
taking out trash. The traces were acquired over the course of
several days. Since the experiments were not scripted, there
were large variations between instances of the same activity.
This is especially true for the cooking traces, where meals
varied from quick sandwiches to long roasts spanning around
2 hours. Additionally, some traces captured more than one
activity, such as ‘using toilet’ followed by ‘brushing teeth’,
and no manual or automatic segmentation of any sort was
performed.

For these experiments, a small camera network was in-
stalled, with one camera node in the kitchen, one in the
bathroom, connected wirelessly to a base node attached to
a laptop (Figure 8). The camera nodes consist of Intel iMote2
nodes equipped with custom camera sensor boards. They
were attached to the ceiling, facing down, so that the entire
room could be seen in the camera’s FOV (using a 162 deg
wide-angle lens). The iMote2’s PXA271 processor was set to
operate at 208MHz, allowing it to perform real-time, online
image processing and human detection on the nodes at frame
rate of 14Hz. The data was transmitted over the wireless
channel and recorded at the laptop.

The camera nodes were programmed with a detection algo-
rithm described in our previous work [22]. The algorithm de-
tected people using two key properties: motion and size. First,
motion is segmented by differencing consecutive frames. Since
the ceiling height is known, the approximate area occupied by
a person in the image plane can be estimated. We construct a
histogram that divides the image into overlapping person-sized
blocks. The value of each histogram bin is set to the number
of foreground pixels that fall within its corresponding block.
The coordinates of the modes of the histogram represent the
detected position of each person. This system is designed from
the ground up to operate in uncontrolled indoor scenarios. It is
robust against the most common types of false detections, such
as ghost-detections that can appear when objects are moved.
The trade-off is that the detected coordinates have a resolution
of approximately 15cm. Since our activity recognition system
is only interested in contextual information (as opposed to
precise localization), we find that this level of accuracy is
adequate.

A SparkFun 6DoF inertial measurement unit (IMU) was
attached to the subject’s wrist, transmitting measurements
through Bluetooth at a 100Hz sampling rate. While a simple
beacon-based time-synchronization scheme was used for the
camera nodes, the IMU’s measurements were simply time-



Fig. 9. A collected experimental trace (z) for an instance of the ‘cooking’
activity. In the arm frequency plot, the color white and two shades of blue are
used to portray the ternary values. The time axis is given in units of seconds.

Fig. 10. Output of activity recognition hierarchy when the input is the trace
shown in Figure 9. All activities are correctly detected, except for a false-
positive cleaning detection. We have found that a higher-level FSM can be
used to correct these false-positives.

stamped upon receipt. Since the size of the SparkFun 6DoF
proved to be bit cumbersome to wear on the wrist we are
currently working on a more portable architecture using TI
EZ430-2480 Zigbee-capable wireless nodes.

Clearly, the performance of this system depends heavily on
the actual FSMs used for activity detection. Here, we briefly
describe some of them to give a general idea regarding their
form. The ‘brushing teeth’ activity was defined as picking up
the toothbrush and toothpaste from the medicine cabinet (arm
‘high’, in front of cabinet, facing it), using the sink, brushing
(‘arm up’ or ‘high’ pose, high-frequency motion), using the
sink again, and placing the toothbrush back. ‘Fetching water’
activity was modeled as picking up a glass (‘arm high’) from
the cupboard, carrying it to the sink (‘middle’ or ‘low’ arm
poses while moving) and filling it with water (‘sink’ location,
‘south’ heading, ‘low’ hand). The ‘eating’ activity was defined
as sitting at the dining table while alternating between the
‘middle’ and ‘high’ arm poses. ‘Cooking’ and ‘cleaning’ were
defined as shown in Figures 7 and 5.

We acquired 40 total data traces where the subject per-

Activity Precision Recall
Cooking 1.00 1.00
Eating 1.00 1.00
Brushing teeth 1.00 1.00
Using toilet (up) 0.71 1.00
Using toilet (down) 1.00 1.00
Cleaning (uncorrected) 0.42* 0.60*
Cleaning 1.00 0.60
Fetching water 0.83 1.00
Taking out trash 0.83 0.83
Total 0.92 0.93
(*excluded from total)

TABLE I
EXPERIMENTAL RESULTS

formed each activity from several times over a number of
days. Figure 9 shows an example of a trace collected by
the system, where the person prepared, grilled and ate a
sandwich. Sometimes, activities were performed in the midst
of others (multi-tasking): for example, in the trace shown in
Figure 9, the subject fetched a glass of water while cooking.
This was correctly detected by the system. The subject was
told to, at times, wander around aimlessly, in order to trigger
multiple irrelevant area detections. In our experience, this is
the largest source of noise in our long-term deployments,
such as [2]. This is where the heading measurements proved
most useful, filtering out many of the area detections where
the person was facing away. The classification results are
shown in Table I, in terms of precision and recall. Precision
is a measure of the exactness of classification, obtained as
Precision = TP/(TP + FP ), where TP and FP are
the number of true positives and false positives, respectively.
Meanwhile, recall measures the completeness of the results,
and is calculated by Recall = TP/(TP + FN), where FN
is the number of false negatives. Both quantities range from
0 to 1, where 1 is best.

The experimental traces yielded very strong results for
‘cooking’, ‘eating’, ‘brushing teeth’ and ‘using toilet (down)’.
The total scores, considering all activities, were found to
be 0.81 and 0.93 for precision and recall, respectively. The
poor recall score for ‘cleaning’ activity is due to the sensors’
inability to robustly detect when the subject has picked up or
returned the cleaning supplies. In our experiments we defined
‘getting/returning cleaning supplies’ as standing by the kitchen
counter (under which reside the cleaning supplies) with a ‘low’
or ‘down’ arm pose. This occurred much too often, especially
during cooking. This is portrayed in Figure 9, where ‘cleaning’
false positives can be seen. We found that all ‘cleaning’
activity false positives were quite obvious when plotted (they
all occurred during cooking), and designed a higher-level FSM
to automatically detect and correct them. Using this FSM we
were able to obtain a much higher precision score, as shown
in table I. This raised the total precision to 0.92. Similarly, the
poor precision score of ‘using toilet (up)’ comes mostly from
false positives that occur during actual ‘using toilet (down)’
activities, and could also be handled in a higher-level FSM.

VIII. CONCLUSION AND FUTURE WORK

We have described a system that is capable of detecting a
set of every-day activities in a house with a minimal number



of sensor nodes. Inertial sensors were used to provide limited
information regarding the subject’s arm pose and arm motion
frequency, while overhead cameras tracked the person in
the context of a map. We motivated the choice of sensing
modalities for this minimal system and demonstrated with
40 experimental traces an overall precision of 0.92 and 0.93
recall. What is more, complex activities such as ‘cooking’,
‘eating’ and ‘brushing teeth’ were correctly classified 100%
of the time. Given the promising results from this prototype
phase, we are now working on a more tightly integrated
system, using a smaller and lower-power wearable node.

In the future, we plan on addressing the weaknesses of our
system. Currently, the state machines for each activity must be
designed by a field expert — someone with enough insight to
be able to dissect the activity of interest into an FSM. There
are several approaches to inferring FSMs from its outputs in
the literature [8][9], which we are now investigating. It is
unclear whether the inferred state machines would be general
enough to parse activities from different people, or in different
environments. However, after the FSM is inferred, it may be
given to a field expert, who uses it to extract the generalized
version. Another weakness of the current system is that a
number of parameters of this prototype system were chosen in
a heuristic manner. Among these are the demarcation of the
exact boundaries for each area provided on the map, and the
selection of values for the relevance period parameter for each
FSM state. Extracting these in an automated fashion may be
the subject of future research.
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