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Abstract—The ability to localize and identify multiple people
is paramount to the inference of high-level activities for informed
decision-making. In this paper, we describe the PEM-ID system,
which uniquely identifies people tagged with accelerometer nodes
in the video output of preinstalled infrastructure cameras. For
this, we introduce a new distance measure between signals
comprised of timestamps of gait landmarks, and utilize it to
identify each tracked person from the video by pairing them
with a wearable accelerometer node.

I. INTRODUCTION

In this paper we introduce PEM-ID (short for Proprio-
Extero Matching IDentification), a system that identifies and
localizes multiple people in a scene by fusing data from
wearable accelerometers with tracks of people detected by a
camera network. We segment each person in the scene and
extract a motion signature describing landmark features of the
person’s gait. The same motion properties are extracted from
the accelerometer node worn by each person of interest. The
problem of identifying the people in the scene is then reduced
to clustering the signals to obtain the matching accelerometer-
to-track pairs, and using the unique ID of each accelerometer
node to identify each person.

The PEM-ID system is geared toward assisted living ap-
plications, corporate environments and security. In assisted
living, the identification and localization of individual people
opens the doors to higher-level inference systems in multi-
person homes. In corporate environments, smart badges with
accelerometers can be used to track employees and visitors.
This system can also be used to find security personnel moving
in the field-of-view of a camera. More importantly, the PEM-
ID system gives us the ability to collect experimental traces
and scenarios for our research in more macroscopic behavior
analysis. We designed the PEM-ID system to leverage the ex-
isting CCTV camera infrastructure, where images are typically
taken from an oblique view using ceiling-mounted cameras,
a configuration that has traditionally been used to maximize
camera coverage. Rather than require a network of tightly-
packed cameras, as most appearance-based solutions do, the
PEM-ID system can identify people even if camera-nodes are
far and few.

One of main the challenges tackled by PEM-ID is the
extraction of uniquely-identifying information from motion
paths. It is known that people move in paths that minimize
the energy spent from the source point to the destination [1].
This results in short, smooth paths [2] as well as per-person
preferred speeds [3] that are dependent on the person’s fitness

Fig. 1. Overview of the approach described in this paper: a motion signature
consisting of landmark features of the person’s gait are extracted from cameras
and accelerometers. This is in contrast to our previous approach [4] which
employed motion path features, i.e. accelerating, decelerating, turning. The
gait signatures are matched between accelerometers and cameras-detected
tracks. Then, the ID of the accelerometer uniquely identifies the person.

and anatomy. As a function of this, in typical planar scenarios,
people walk mostly in straight lines and with nearly constant
speeds. Changes in direction and speed occur primarily near
source and destination points, as well as in the presence of
obstacles, such as doors, walls or winding hallways. This
allows us to divide all walking paths into two types of motion
segments:

1) Cruising segments — long time-span motion segments
with near-constant velocity.

2) Transition segments — short time-span motion segments
where there are changes in velocity, whether in the form
of tangential or centripetal acceleration.

The transition segments are characterized by changes in ac-
celeration which, due to their low probability of occurrence
in typical scenarios, often contain enough information to
discriminate between different people. The greater sensing task
here is to obtain such highly-discriminating features from the
linear motion that is found in the more prevalent cruising
segments. Furthermore, these features must be measurable
from both wearable accelerometers and infrastructure cameras
in realistic, uncontrolled scenarios. Finally, due to bandwidth
considerations, it is desirable to utilize a representation that is
compact.

To this end, we use as a personal “motion signature” the
timestamps of two landmark events of each person’s gait
cycle: the heel-strike and midswing events. As opposed to
our previous work [4], which only identified people during
segments of transition motion, the motion signature used in
this paper allows the identification of people during both
types of motion segments (transition and cruising). In this
paper, we describe a method to extract the heel-strike and
midswing features from both cameras and accelerometers,
and introduce a new distance metric to compare them in the



presence of uncertainties in detection timestamps and time-
synchronization offsets. Finally, a prototype system is used to
validate the person-identification procedure. Figure 1 summa-
rizes our system. Our assumptions in this work are that people
move on a two-dimensional ground plane perpendicular to
gravity, that they are walking (not running), and that they move
transversal to the camera. Additionally, we assume all cameras
and sensor nodes are synchronized to a few milliseconds, as
our distance metric is capable of handling small time offsets
in synchronization.

The main contributions of this paper are:
• The formulation of the identification problem as a min-

imization of the global distance between timestamps of
gait landmarks from different sensing modalities.

• The development and characterization of a new distance
metric to correlate sparse sequences of timestamps, and
which is robust to small synchronization errors and noise.

II. RELATED WORK

Personal identification at a distance has been traditionally
done through biometrics, such as face and gait recognition.
The biggest obstacles with these approaches is that they rely on
the existence of a database of pre-acquired biometrics, which
is not feasible to obtain in many situations such as visitor-
tracking. Of the two, only gait recognition is viable at long
distances for multiple people at a time. But gait recognition
can be variant with clothing [5], and it has been shown that
gait is susceptible to impersonation attacks [6]. A different
approach to identify people is tag them with wearable nodes
and utilize one of the localization approaches from the sensor
network literature, typically through RF [7] and/or ultra-sound
[8]. These require the installation of anchor nodes, and typi-
cally consume relatively large amounts of energy, making their
deployment cumbersome and costly. Advantages of utilizing
cameras instead are their relatively high localization accuracy,
and pre-installed infrastructure.

Perhaps more similar to our approach are other systems
that fuse anonymous sensors (in our case, cameras) with ID-
bearing ones (accelerometer nodes). In [9], laser ranging and
RFID-like wearable nodes were used within a particle filter to
simultaneously estimate locations and identities of people in a
building. In [10], an accelerometer and gyroscope were used
for dead-reckoning, while a body-mounted camera corrected
the location-estimation errors by recognizing geo-tagged im-
ages from a database. We ruled out a dead-reckoning approach
to identifying accelerometer-carrying people in a video as it
would fail in situations where people simultaneously walk
in the same direction, which is common in entrances and
exits. Other augmented reality and robot navigation systems
have also fused cameras and inertial sensors, but typically in
single-user configurations, which preclude the necessity for ID
assignment that is critical in multi-user scenarios. A similar
type of identification based on video and motion was reported
in [11], where a robot learned to recognize itself in a mirror
by correlating knowledge regarding the motion of its limbs,
to the motion of objects it could see in the mirror. At a

high level, our system tackles the identification of multiple
people in a scene by treating it as multiple inter-connected self-
recognition problems. We fuse information from exteroceptive
sensors (cameras) with proprioceptive ones (accelerometers) to
identify people, in a process that we call proprio-extero match-
ing (PEM). In early experiments, we tackled the identification
problem using the correlation of acceleration measurements
from cameras and accelerometers. From this we found that
such an approach can successfully identify people during
transition segments of motion, but fails during the more
common cruising segments. In this paper, we describe a gait-
based signature that is present during both types of motion,
and derive a new distance metric to disambiguate matching
pairs of this motion signature. The literature related to the
distance metric is vast, including string matching [12] as well
as time-series approaches [13]. String-matching approaches
such as longest common subsequence (LCS) do not consider
timestamps, only sequences of symbols. Without timestamps,
all biped walking sequences are equal (heel-strike, mid-swing,
heel-strike, etc.) and cannot be disambiguated. Time-series
approaches generally consider a densely populated sequence of
uniformly sampled values, which are overkill for lightweight
sensor nodes, with regards to processing demands, radio
transmissions and power consumption. One possible exception
is described in [14], which has similarities to our approach in
its use of sparse “landmarks” of the original signals. However,
all gait signals used here would be considered similar given
their notion of signal similarity.

III. PROBLEM FORMULATION

Given that people must go through gait cycles when-
ever they walk, we obtain a motion signature consisting of
timestamps of specific landmark events of the gait cycle:
the heel-strike and midswing instants. We acquire sequences
H = (h1, h2, ...) and M = (m1,m2, ...) of timestamps
of heel-strike and midswing events for both cameras and
accelerometers. The cameras signals are referred to with a
superscript C, and the accelerometer signals with an A. We
denote the motion signatures for a given tracked person ` as
SC` = {HC

` ,M
C
` }, the signature for a given accelerometer k

as SAk = {HA
k ,M

A
k }.

The problem of identifying people from their motion signa-
tures can, then, be defined as finding the most similar pairs of
camera and accelerometer signatures. For this we must obtain
the matching of SAk to SC` that minimizes a global distance
metric d over all k and `:

arg min
Λ

∑
k

n∑
`

d(SAk , S
C
` )Λk` (1)

where Λ is a matrix such that Λkl = 1 if accelerometer k
matches track `, otherwise 0.

In Section V we define and characterize a new distance
metric d, which compares two sequences of sparse timestamps
according to their average shift and jitter. In the next section,
we begin our discussion by describing the extraction of gait
landmarks from our two sensing modalities.



Fig. 2. Detection of gait cycle markers from both cameras and ac-
celerometers. The upward triangles correspond to heel-strike detections, while
downward triangles are used to mark the midswing detections. The selected
peak (with the black square marker) displays an offset of ∼ 47ms. Such
offsets are dependent on time synchronization errors, communication delays,
and quantization and sensor noise. As described in Section V, our distance
metric is invariant to these offsets in typical scenarios. The distance metric
automatically matches corresponding gait features from accelerometers and
tracks.

IV. EXTRACTION OF MOTION SIGNATURE

It is known that different people have different preferred
stepping periods and step lengths — and therefore, individual
preferred walking speeds (step length/period). Given the
relatively low sampling rate of cameras, the stepping period
by itself is not sufficient to disambiguate multiple people,
while step lengths cannot be obtained from accelerometers.
The stepping timestamps H and M , however, carry all the
information of the stepping period biometric plus an additive
stochastic component due to the uniform distribution of the
instant of the person’s initial step. This stochastic component
makes it unlikely that two people in a scene would indepen-
dently exhibit the same sequences of stepping timestamps.

The event that is typically used to mark the beginning of
the gait cycle is the heel-strike of the swing leg. At that
moment, the person’s feet are both on the floor (double support
phase) and at their farthest distance from one another. Also, the
vertical acceleration of the impact can be clearly observed as a
double-peak pattern in the person’s upward acceleration, as can
be seen in the unfiltered accelerometer signal in Figure 2. In
addition to the heel-strike instant, we further characterize the
person’s gait patter by extracting the timestamp of the moment
when both legs are at their closest point, or the midswing
instant.

A. Stepping Pattern from Cameras

The heel-strike and midswing instants can be obtained from
the cameras by searching for the moment when the person’s
feet are, respectively, at their farthest and their closest. These
events can be observed as the maxima and minima of the

standard deviation of the person’s foreground pixels in the
ground-plane direction.

To detect this, we first approximate the person’s antero-
posterior axis by the principal component of the distribution
of foreground pixels in the blob. Then the horizontal-plane
deviation is taken as the standard deviation of all pixels
perpendicular to that axis.

Finally, to accommodate for people at different distances
from the camera, we normalize the result by the standard
deviation of the foreground pixels in the vertical direction,
obtaining a type of aspect ratio measurement. Figure 2 shows
the detection of midswing and heel-strike events from this
signal.

B. Stepping Pattern from Accelerometers

It is known that during the gait cycle, the vertical position
z of the body’s center of mass reaches its maximum at the
midswing, and its minimum at the heel-strike. If we approxi-
mate the vertical bobbing motion by a sinusoid z = A sin(ωt)
(where ω ∈ [1.6, 2.4]Hz approximately and A ≈ 5cm [15]),
then the second derivative of z is a sinusoid that is off-phase
by a half-period: z̈ = −ω2A sin(ωt). Hence, we can detect
the maxima (midswings) and minima (heel-strikes) in vertical
position by observing the minima and maxima of the vertical
acceleration, respectively.

This is shown in Figure 2, where heel-strike and midswing
events are obtained from both cameras and accelerometers.
Due to synchronization offsets, communication delays, and
quantization and sensor noise, the detections are often dis-
placed by ∼ 0 − 80ms. In typical scenarios (as described in
Section V) our system’s results are invariant to such offsets.

V. DISTANCE MEASURE

Pearson’s correlation coefficient ρ is a popular measure for
signal similarity. The correlation coefficient measures the co-
variance between two signals, normalizing it by their standard
deviations:

ρ(A,B) =
1

N − 1

∑N
k=1(ak − ā)(bk − b̄)

σaσb
(2)

where A = (a1, ..., aN ) and B = (b1, ..., bN ) are time series
carrying uniformly sampled data. This formulation gives ρ a
well-defined range (ρ ∈ [−1, 1], with 0 meaning no correla-
tion), invariance to scale and offset (ρ(mA+n,B) = ρ(A,B)),
and strong dependence on time since the signals are compared
sample-wise. This last property implies that if they measure
the same range of time then the input signals A, B must be
sampled at the same rate — or interpolated.

In our initial experiments [4] we investigated solely the
transition segments of motion and found that the correlation
of two time-series of acceleration magnitudes (one from the
accelerometer and one from the camera) was an effective
measure of whether they originated from the same person.
However, this method required there to be frequent changes
in acceleration, which are not present during the more common
cruising segments of motion.



Fig. 3. (a) Correlation coefficient for two same-frequency sinusoids, where
one signal was added 20% white Gaussian noise. The results were averaged
over 100 instances. (b) Our distance metrics dµ and (c) dσ for signals
consisting of timestamps at a 1Hz frequency but with normally distributed
time offsets, averaged over 100 instances. The correlation takes tens of
samples to converge, while our metrics do so instantly.

Furthermore, we found that the correlation coefficient re-
quires a large number of samples before converging to a
steady-state value, delaying the correct identification of each
person in the scene. Figure 3(a) shows the correlation of two
synthetic signals, as a function of the number of samples
received. The two correlated signals are identical sine waves
sampled at 100Hz, except for the addition of white Gaussian
noise to one of them. As can be seen in the figure, the conver-
gence time of the correlation is dependent on the underlying
signal’s frequency characteristics. Higher-frequency signals
converge faster than low-frequency ones. The convergence
time is also negatively affected by an increase in the standard
deviation of the added noise, as well as a decrease in sampling
rate of the signal. All of this indicates that the correlation
coefficient requires the transmission of densely-sampled sig-
nals over the wireless channel, which causes congestion and
limits the total supported number wearable nodes in the scene.
Instead, it is desirable to transmit only the smallest amount
of samples necessary to accurately match any two signals.
In our system we require only the values of the midswing
and heel-strike timestamps for each step cycle, which limits
the amount of transmitted information to two datapoints per
cycle. This, however, makes the Pearson correlation coefficient
unsuitable for our motion signatures, since ρ operates on
signals consisting of sampled values rather than timestamps.

A. Designing a Distance Metric

In this section we design a distance metric that operates on
sequences of timestamps such as H and M . We intend to use
this metric to compare each HA

k to each HC
` , and each MA

k

to each MC
` , for all k and `, in order to infer which pairs of

signals originate from the same source. This is different from
classical substring-matching approaches from the data mining
literature given that in our case we must compare sequences
that contain absolute time information, as opposed to the
typical string’s logical time (i.e. ordering). In this discussion,
we abstract the distance metric from its intended use with
midswing and heel-strike signals, by building our arguments in

Fig. 4. Automatically matching heel-strikes and midswings to compute
dµ and dσ in experiment from Figure 10. The matchings used to compute
D(HC , HA), D(MC ,MA) from track to accelerometer are shown as lines.

terms of two generic lists of timestamps A and B. Then we are
looking for a distance d(A,B) which presents the following
properties:

1) Operates on sparse data, since the timestamps are
expected to be produced in the order of a couple of
Hz.

2) Converges within a small number of samples, in order
to be usable in real-world scenarios where people may
be unoccluded in the FOV for short periods.

3) Rewards coincidences — If a camera and an ac-
celerometer simultaneously detect a heel-strike or
midswing event, then the computed similarity between
the two should increase.

4) Punishes mismatches — If one signal measures a heel-
strike and the other does not, then their similarity should
decrease as a function of the distance to the nearest heel-
strike.

Note that since the motion signature does not explicitly carry
sampled measurement values, such a metric is inherently
scale and offset-invariant. In the remainder of this section we
describe two distance metrics dµ and dσ which measure the
average distance and average deviation between two signals A
and B of timestamps.

To satisfy the requirements listed above we compute the
distance between two lists of timestamps A = (a1, ..., a|A|)
and B = (a1, ..., a|B|) in the following manner. If we define
the offset between two timestamps as d(ai, bj) = ai− bj (and
not the other way around), we can define the offset between
a timestamp ai and a list of timestamps B as the difference
between ai and the bj ∈ B that is closest to it (in terms of
absolute value):

d(ai, B) = ai − arg min
bj∈B

(|ai − bj |) (3)

Note that the offset can be (and often is) negative, and that
the offset between a timestamp and a list that contains it is
zero: d(ai, A) = 0 ∀ ai ∈ A.

We, then, define the list of element-wise offsets between the
timestamps in A to the list B:

D(A,B) = ( d(a1, B), d(a2, B), ... , d(a|A|, B) ) (4)

where the capital letter D is used instead of d to underline
that this function produces a list, rather than a scalar. Figure 4
shows the matching between timestamps for experimentally-
acquired heel-strike signals (D(HA

k , H
C
` )) and midswing sig-

nals (D(MA
k ,M

C
` )). The offset between each pair of times-

tamps is their horizontal distance.



Fig. 5. The distance d(ai, B) between a point ai in A and the list of points
B is defined as the closest distance between ai and any point in B. In the
case where B = A + τab and τab < 1

2
min{δb1, δb2, ...}, then d(ai, B)

will always be equal to τab.

Note that |D(A,B)| = |A| and that D(·, ·) is not symmetric
(D(A,B) 6= D(B,A)). This can be clearly seen when
|A| 6= |B|, which implies |D(A,B)| 6= |D(B,A)|, and so
D(A,B) 6= D(B,A). This asymmetry is undesirable as it
allows mismatching timestamps to be entirely ignored by
D in some situations, violating our requirement to punish
mismatches. We curb this by defining

D′(A,B) = D(A,B) ∪ −D(B,A) (5)

where ∪ represents list concatenation followed by re-sorting.
Finally, we define the distance metrics dµ and dσ between

A and B as the mean and standard deviation of D′:

dµ(A,B) = mean(D′(A,B)) =
∑

v∈D′(A,B)

v

|D′(A,B)|
(6)

dσ(A,B) = std(D′(A,B)) =

√√√√ ∑
v∈D′(A,B)

(v − v̄)2

|D′(A,B)| − 1
(7)

1) Behavior of Metrics given Time Offsets: Consider the
case where A and B are signals obtained from different
sensing modalities, but regarding the same person (i.e. they
are matching signals). Let B constitute a time-shifted clone of
A such that B = A + τab, where τab is a scalar representing
the time synchronization offset between A and B, and where
there is no clock skew.

We claim that the dµ(A,B) is guaranteed to perfectly
measure time offset (τab) between A and B, as long as the
following is true:

τab < min(∆A)/2 = min(∆B)/2 (8)

where ∆A is the list of inter-timestamp intervals of signal A
(and similarly for ∆B) as defined by:

∆A = ( d(a1, a2), d(a2, a3), ... , d(a|A|−1, a|A|) )
= ( δa1, δa2, ... , δa|A|−1 ) (9)

If (8) is true, then for any ai ∈ A the closest point in
B is guaranteed to be bi (same subscript index i) denoted
by bi = ai + τab, with d(ai, bi) = τab. This is because any
other point bj ∈ B is either at the right of bi (and so bj ≥
ai+τab+min(∆B)) or at the left (bj ≤ ai+τab−min(∆B)).
See Figure 5. If the former, then (assuming τab > 0 with no
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ai

τaiμτa

μτb τbi
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Fig. 6. Definition of symbols for Section V-A2. The time offsets τai and
τbj ∀i, j are Normal random variables with mean µτa and µτb (shown with
gray arrows and gray circles) and standard deviation στa and στb.

loss of generality) |ai−bi| = τab < τab+min(∆B) = |ai−bj |.
If the latter, then since τab < min(∆A)/2 we have |ai−bi| =
τab < min(∆B)/2 < |τab−min(∆B)| = |ai− bj |. Similarly,
aj will be the closest point in A to any point bj .

Thus, (8) guarantees that the distances d(ai, B) and
d(bj , A) all equal τab, and dµ(A,B) = mean(D′(A,B)) =
mean(τab, τab, ...) = τab, which proves our claim. Similarly,
since std(τab, τab, ...) = 0, the value of dσ in the noiseless
case is 0 — indicating that A and B are perfectly-shifted
versions of one another with no jitter. In the next section
we analyse the behavior of dµ and dσ under the presence
of additive timestamp noise (jitter).

2) Behavior of Metrics given Random Timestamp Noise:
Instead of the noiseless relation B = A + τab used in the
previous section, where the time shift τab was a constant, in
this section we consider the time shift to be a random variable.
The rationale for this is that in reality the time shift varies
with factors such as signal propagation delays, sensor noise
and sampling/quantization noise. We show, however, that the
expected values of dµ and dσ approach the idealized values
from Section V-A1, under realistic assumptions (similar to
assumption (8)).

A complete description of the relation between two match-
ing signals A and B must consider: (1) the true (hidden) state
Φ of which A and B are observations, (2) the time offset
of A and B from the true time in Φ, and (3) false positive
and false negative timestamps. In this paper we consider a
simplification by assuming the probability of false positives
and false negatives is approximately 0. Our experiments show
that this approximation does not negatively impact the results
from this section, since the experimental number of FPs and
FNs is low. We to future work leave an analysis of these
effects, as well as an in-depth discussion of the sources of
noise.

Taking these factors into consideration, relation between A
and B can then be written as:

A = Φ + TA B = Φ + TB (10)

where TA, TB are lists of independent random variables
representing Normally-distributed timestamp offsets:

TA = ( τa1, τa2, ... ) τai ∼ N (µτa, σ2
τa)

TB = ( τb1, τb2, ... ) τbj ∼ N (µτb, σ2
τb)

(11)

As depicted in Figure 6, τai and τbj are the individual time
shifts from φi to ai and bj respectively. The time shifts jitters
around their mean values µτa and µτb (shown as gray circles).



Equation (10) implies that all ai ∈ A and bi ∈ B are
randomly-shifted versions of some φi ∈ Φ. Given that there
are no false positives or false negatives, whenever an ai and
bi originated from the same φi (i.e. they are true matches),
they share the same subscript index. That is, ai = φi + τai
and bi = φi + τbi.

Then consider the following condition on the statistical
distributions of TA, TB and Φ:

P(|τai − τbj | < |δφ|/2) ≈ 1 (12)

Then, equation (12) guarantees that for all ai ∈ A the closest
point in B will always be that between ai and its the true
match bi (and vice versa). That is:

d(ai, B) = ai − arg min
bj∈B

(|ai − bj |) =

= φi + τai − φi − τbi = τai − τbi
(13)

Regarding the applicability of assumption (12) in our real-
world scenario, for stepping signals δφ ≈ 1/(1.2 to 2.8Hz).
This implies jitter |τai− τbi| of up to around 178.6ms satisfy
these requirements, which is an order of magnitude larger than
some of the noisiest systems.

Similar to the noiseless case, the condition in (12) assures
that D′(A,B) is composed solely of distances between true
matches:

D′(A,B) = ( τa1 − τb1, τa2 − τb2, ... ) (14)

Given that all the τai and τbi are independent normal
random variables, their difference τ?i = τai − τbi is also
Normally distributed. Therefore, dµ(A,B) and dσ(A,B) are
the mean µ? and standard deviation µ? of random time offset
τ?i between the event timestamps in A and those in B:

dµ(A,B) = mean({τ?i }∀i) = µ? = µτa − µτb (15)

dσ(A,B) = std({τ?i }∀i) = µ? =
√
σ2
τa + σ2

τb (16)

This can be seen in Figure 7, which portrays the behavior
of our distance metrics when faced with random time shifts.
In the figure, we consider the case where Φ is a 1Hz signal
and TA = 0 (i.e. Φ = A) and vary the parameters µτb and στb
governing the distribution of TB . This simulates the effect of
varying µ? = 0 + µτb and σ? = 0 + στb. As predicted, for
small magnitude of noise (offset and jitter) dµ and dσ are good
approximations of µ? and σ?.

In addition, dµ and dσ satisfy our requirements for fast
convergence, as as shown in Figure 3(b) and (c). As a function
of the sample size, the values of dµ and dσ converge to
their expected values instantly, while other metrics such as
the correlation coefficient require larger intervals.

B. A Note Regarding Complexity

An important aspect of the distance metrics dµ and dσ
is that they can be computed in linear time by taking into
the account the natural ordering of the incoming data. Since
there are well-known recursive methods of computing the
mean and standard deviation of signals online [16], the only

Fig. 7. Behavior of dµ and dσ as we sweep µ? and σ?. When condition
12 is true, dµ ≈ µ? and dσ ≈ σ?.

possible computational bottleneck is the calculation of the
minimal distance in equation (3), which must be minimized
over all combinations of two items from the sets D(A,B)
and D(B,A). However, it can be shown that it is possible to
compute D(A,B) with complexity O(|A|+ |B|) by traversing
the input signals A and B in chronological order. Below is the
sketch of an algorithm that achieves this, as it traverses A and
B at most once:

function D(A, B)
distances← [ ], i← 1, j ← 2
B ← (−∞) ∪B ∪ (∞)
while i ≤ |A|

if d(ai, bj) < d(ai, bj−1) and d(ai, bj) < d(ai, bj+1) then
append d(ai, bj) in distances
i← i + 1

else ← j + 1

VI. MULTIPLE-PERSON IDENTIFICATION ALGORITHM

In the previous sections we derived and characterized two
distance metrics, dµ and dσ , which provide a measure of the
average shift and jitter between timestamps in two sequences.
In order to identify people in the scene, it is necessary to
combine those two distances into a single metric. Thus, given
two motion signatures SAk = {HA

k ,M
A
k }, SC` = {HC

` ,M
C
` },

we compute the linear combination of the shift and jitter
distances, dµ and dσ:

d(SAk , S
C
` ) = dµ(HA

k , H
C
` ) + αdσ(HA

k , H
C
` )

+ dµ(MA
k ,M

C
` ) + αdσ(MA

k ,M
C
` )

(17)



Fig. 8. Similarity matrix comparing each accelerometer signal to each track
in a random permutation of 10 experimental traces. For clarity, the value of
each bin in the figure is the normalized inverse of the distance metric (hence,
taller bars denote higher similarity). Note that item (10, 10) in the diagonal
does not represent the best match in its row or column, as would be expected.
This situation is rectified by selecting the assignments that optimize the global
similarity over all assignments, as described in Section VI.

where the α is an experimentally-determined parameter that
weights the importance of the time deviations dσ compared to
dµ. In all our experiments, we use α = 2.

Given m tracks and n accelerometers, a distance matrix Ω
is constructed where each cell Ωk` is the distance between
the motion signature of the kth accelerometer and that of
the `th track — i.e. Ωk` = d(SAk , S

C
` ). Figure 8 shows an

example of such a matrix where m = n = 10, obtained
from a permutation of 10 experimentally-acquired traces, as
described in the evaluation section (Section VII). The matrix in
the figure displays the similarity between the motion signatures
(the inverse of their distance, normalized by the maximum) to
provide a clearer picture.

If people were identified by simply picking the best value
for each row or column of Ω, there could occur multiple
matches for the same accelerometer or track. This is unde-
sirable, since each person carries at most one accelerometer,
and no accelerometers are shared. This can also lead to
situations such as the one in Figure 8, where the best match
for accelerometer 10 is not found to be track 10, as would be
expected.

For these reasons, we instead identify people based on
the best global assignment of accelerometers to tracks, as
described in equation (1). Our goal is, then, to find the match
matrix Λ that minimizes the sum of matched distances, as
described in equation (1). We solve (1) through the Munkres
assignment algorithm [17], which yields the optimal solution
in polynomial time O(max(m,n)3). In order to allow ac-
celerometers and cameras to go unmatched (in case there are
people who are not carrying a wearable node, for example),
we set to∞ all distances in Ω that are above a threshold value
(we used d > 2.5 in our experiments).

VII. EVALUATION

In order to clearly separate the performance of the matching
and identification algorithm from artifacts originating from the
multiple-person tracker employed in our prototype, we divide
our evaluation into two sets of experiments. All experiments

Fig. 9. Average correctness of the ID assignments that result from applying
our distance measure to experimentally acquired motion paths. Using different
permutations of data from one-person experiments we simulate scenarios of
up to 10 people in the FOV, and display the average of 10 such simulations
for each datapoint in the figure. The identification rates are above 85% in all
cases.

Fig. 10. Instance of multiple-person experiment showing three extracted
tracks. The radii of the circles represent the blob aspect ratio at each instant.
The PEM-ID system correctly identified Track 1 as corresponding to the
single accelerometer-carrying person in the scene. Videos can be found at
http://enaweb.vimeo.com/drupal/PEM-ID-videos.

were recorded with a 640×480 camera at 30fps. Data from a
SparkFun 6DoF IMU carrying a MMA7260Q accelerometer,
sampling at 100Hz, was collected serially to a small computer
attached to the person’s body.

In the first set, a single person walks across the FOV of
the camera for 12 experimental runs, changing the source and
destination points each time. Given the physical constraints of
the experiment, the camera captured approximately 10 steps
before the person left its FOV. When outside the FOV, the
person’s steps were captured only by the wearable accelerom-
eter. This was repeated for two different people, resulting in
24 data sets. The person’s location was obtained from each
video frame by averaging the x and y coordinates of the
foreground pixels after a simple background-subtraction step.
This allowed the simulation of multiple-person scenarios by
considering different permutations of the experimental data.
The resulting simulations are often quite challenging datasets,
since the walking frequencies obtained from the same person
tend to be close to their preferred stepping frequency. In real-
world scenarios, however, this would be counter-balanced by
the person’s stepping phase. We simulate this by randomizing
the moment of the first step with a uniformly-distributed time-
offset of up to 1 second that is added to each simulated
trace. Under these conditions, the distance metric and global
optimization procedure result in average recognition rates of
over 85% for scenarios with up to 10 people in the scene at
a time, as shown in Figure 9. With 2 people in the scene, we
obtained an average recognition rate of 100%.

To demonstrate the application of the system to actual
multiple-person situations, where there may be tracking errors
and occlusions, we recorded a second set of experiments.



In these experiments, three people crossed the FOV of the
camera, for 8 experimental runs, each time entering/leaving
from different directions. The PEM-ID system was used to
system identify the only person in the scene that was wearing
an accelerometer node. Figure 10 shows an example frame
from one of these multiple-person experiments overlaid with
each person’s detected track. The blob aspect ratio is depicted
in the radii of the circles in the image. Each person in the scene
was segmented using a straight-forward background subtrac-
tion and connected-component analysis step, and then finally
tracked with a mean-shift tracker. The average recognition rate
for these experiments was 87.5%. Since only one of the three
people in the scene was carrying an accelerometer, the global
optimization procedure from equation (1) does not have any
impact. If all three people were carrying accelerometers, it
is expected that the global optimization step would increase
the recognition rate above 90%, as found in the permutation
experiments (Figure 9). Hence, the more people in the FOV
wear accelerometer nodes, the better the expected recognition
rate. Example videos of the PEM-ID system running can be
found at http://enaweb.vimeo.com/drupal/PEM-ID-videos.

VIII. DISCUSSION

The limiting factor for the number of people that can be
concurrently identified in PEM-ID is the sampling rate of the
sensors, which affect the precision of the time measurements.
With cameras at 30fps, and assuming τab is at most 1frame
(±33ms), the system should be able to identify at most 10
people walking at the same stepping frequency. However, since
people’s preferred stepping frequencies are typically different,
given enough time it should be possible to disambiguate
between them.

Our identification system relies on the low probability of
two different people presenting synchronized stepping patterns
in real-world scenarios. If the people are in the FOV for a
short time, however, this probability increases, and the system
becomes less viable. The longer the time when the person
is under camera coverage, the better the performance of the
algorithm — thus, by using multiple cameras to increase
coverage it should be possible to obtain better recognition
rates. The probability of occurrence of synchronized stepping
patterns also increases with the number of people in the scene.
To mitigate this problem, it is possible that the rough proximity
of each person to anchor nodes can be approximately measured
through RSSI or other means, and used in conjunction with
the stepping timestamps. Similarly, additional features such as
the direction of each person’s motion (captured from wearable
magnetometers) can be leverage for further disambiguation.

IX. CONCLUSION

We have described a system that identifies people using the
timestamps of gait landmarks from cameras and accelerome-
ters. The system has diverse applications such as identifying
security personnel and separating data from multiple-person
deployments into single-person traces. The system uses a new
distance metric to compare sequences of timestamps, finding

their relative time shift and jitter. Our experiments show that
the system is able to correctly identify people over 85% of
the time, even in 10-person scenarios. Additional precision
in more crowded situations may be possible by incorporating
additional constraints such as walking direction and rough
proximity to anchor nodes. This as well as an expansion to a
multiple-camera system are left for future work.
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