
BScope: A Scalable, Run-Time Architecture for Activity
Recognition Using Wireless Sensor Networks

Dimitrios Lymberopoulos,Thiago Teixeira, Andreas Savvides
Embedded Networks and Applications Lab (ENALAB)

Yale University
New Haven, CT, USA

{dimitrios.lymberopoulos,thiago.teixeira,andreas.savvides}@yale.edu

Abstract
This paper presents a new system for interpreting hu-

man activity patterns using a sensor network. Our sys-
tem provides a run-time, user-programmable framework that
processes streams of timestamped sensor data along with
prior context information to infer activities and generate ap-
propriate notifications. The users of the system are able to
describe human activities in high level scripts that are di-
rectly mapped to hierarchical probabilistic grammars used
to parse low level sensor measurements into high level dis-
tinguishable activities. Our approach is presented, though
not limited, in the context of an assisted living application in
which a small, privacy preserving camera sensor network of
five nodes is used to monitor activity in the entire house over
a period of 25 days. We demonstrate that our system can
successfully generate summaries of everyday activities and
trigger notifications at run-time by using more than 1.3 mil-
lion location measurements acquired through our real home
deployment.

1 Introduction
The proliferation of wireless sensor networks is rapidly

making the collection of overwhelming amounts of data pos-
sible. Scientists are already using this data to gain a better
understanding of physical processes, large ecosystems and
the behavior of different species. In military applications,
information from otherwise hard to reach places is facili-
tating the efficient collection of intelligence related to de-
tection, identification, tracking and observation of interests.
From a data interpretation perspective, the above efforts have
yielded significant contributions in the efficient transport of
raw data and trip-wire detections. In most of these situa-
tions, however, the data reaches a human interpreter in raw
or aggregate form before it is fully understood. In this paper
we argue for a different set of applications, closer to every-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

day life, where sensor data needs to be understood by the
network, without the human in the loop, in order to provide
responsive services.

In this paper we present a run-time architecture that
processes streams of timestamped sensor data along with
prior context information to infer activities and generate ap-
propriate notifications. In our system, users describe activ-
ities as a collection of rules with spatial and temporal char-
acteristics expressed in high level script form. Each activity
description has well-defined inputs and outputs enabling the
creation of a library of activity components that can be con-
nected together into hierarchies to provide even more com-
plex interpretations. The power of this system is demon-
strated using a real sensor network deployment for assisted
living and a 25-day location dataset collected from this de-
ployment. In this setup, descriptions of human behavior pat-
terns are used to generate summaries of daily activities and
to trigger various levels of alarms as well as cell-phone and
email notifications. In addition to human observation, an-
other notable aspect of our system is that it uses the same
framework to define data and system consistency checks.
By combining sensor data with network metadata, the sys-
tem executes a continuous consistency check that verifies
that the network is operating correctly. When the outputs do
not match the designer’s pre-specified expectations, an addi-
tional set of notifications is generated. Although our presen-
tation is described in the context of a home setting environ-
ment, our architecture is more general and can be directly ap-
plied in other application domains such as, workplace safety,
security, entertainment and others.

This paper makes three main contributions. First, it
presents a run-time architecture that utilizes the inference
power of Probabilistic Context-Free Grammars (PCFGs)
organized in hierarchies, to classify spatial and temporal
patterns from simple low-level sensor measurements. To
achieve that, the architecture defines a set of conventions for
dealing with space and time. Second, it demostrates the fea-
sibility of this approach in a real world assisted living appli-
cation. The concepts presented here are applied to classify
behaviors as well as to supervise the network and verify that
it is functioning according to the designer’s specification by
using a small set of predefined rules. Third, in our architec-
ture the programmer enters the patterns in the form of high
level scripts containing rule and grammar specifications, thus
abstracting the low-level node programming details. This ap-

proach biases the required programming effort towards do-
main expertise rather than embedded systems, networking
and database programming.

Our presentation is organized as follows: in the next sec-
tion we motivate the choice of the inference engine and we
provide some background information. Section 3 presents
the methodology for converting a sensor network into an in-
terpretation mechanism and shows the main idea of the pro-
posed system architecture. Section 4 provides an overview
of the related work and it highlights the main contributions
of our work. In Section 5 an in depth analysis of the de-
sign challenges for embedding the selected inference engine
into a run-time sensor network architecture is presented and
a high-level description of our main system design contribu-
tions is given. Section 6 describes in detail the architecture
through illustrative examples based on an assisted living sce-
nario. Section 7 presents the evaluation of the system on a
25-day dataset acquired from a real home deployment and
Section 9 concludes the paper.

2 Motivation and Background
In order to translate raw sensing data to high level in-

terpretations, such as human activities, an inference engine
with the ability to automatically discover patterns in the data
and logically label them is required. In general, the different
pattern recognition design approaches that can be used, can
be divided into two broad categories [13]: (1) the decision-
theoretic approach and (2) the syntactic approach. In the case
of the decision-theoretic approach (neural networks etc.) a
decision function that classifies an input pattern to one of two
or more different pattern classes has to be mathematically
defined. Usually, the parameters of this function are trained
with a well-chosen set of representative patterns and the sys-
tem is expected to perform satisfactorily on “real” data dur-
ing normal operation. This approach is ideally suited for ap-
plications where patterns can be meaningfully represented in
vector form. However, in many applications, as in the case
of human activity detection, the structure of a pattern plays
an important role in the classification process. For instance,
several different human activities can be decomposed to the
same set of primitive actions. The order with which these
primitive actions take place can be used to differentiate be-
tween different activities. In these situations, the decision-
theoretic approach has serious drawbacks because it lacks a
suitable formalism for handling pattern structures and their
relationships. Conversely, the basic concept of the syntac-
tic pattern recognition approach (Probabilistic Context-Free
or Context-Sensitive Grammars) is the decomposition of a
pattern into sub-patterns or primitives. These primitives are
used as a basic vocabulary over which different grammars
can be defined, each describing a different pattern. This
process is analogous to natural language, where grammars
over an alphabet of letters or words can be used to describe
different words or sentences respectively. As we will show in
section 2.2, the probabilistic aspect of the grammars allows
them to parse out the most likely parse tree among multiple
competing alternatives.

Similar functionality to grammars could be achieved by
the more widely-used Hidden Markov Models (HMMs).

Mathematically, HMMs are very similar to Probabilistic
Context-Free Grammars [13]. In practice, this means that
the recognition power and training capabilities of both tools
is the same [9]. However, PCFGs provide a much more ex-
pressive interface that is closer to the human way of thinking
than HMMs. The expressiveness and generative power of
grammars allows the derivation of a large number of HMMs
from a compact set of rules. This is very important in the
case of sensor networks where a high level programing in-
terface is required.

Fusing the powerful grammar formalism with the exten-
sive monitoring capabilitites of sensor networks is as chal-
lenging as appealing. Sensor networks have been demon-
strated to provide continuous streams of data that are distrib-
uted over space and time. Grammars alone cannot perform
the task of parsing continuous spatiotemporal data. First, a
run-time architecture responsible for parsing the data as it
comes in to the system is required. Second, a time abstrac-
tion for grammars must be developed since grammar’s for-
malism does not directly support handling of numerical time
values. In addition, a sensing abstraction mechanism is re-
quired that will hide the complexity of the sensing layer by
encoding information from multiple sensors into a common
form that fits the grammar processing model.
2.1 Scope of This Paper

The BScope system provides a generic middleware archi-
tecture that programmers can use in different application do-
mains and with different sensing modalities to define and ex-
tract patterns from low level spatiotemporal sensing data. In
this paper, we demonstrate the capabilities of the proposed
architecture in the context of an assisted living deployment.
We would like , however, to emphasize that the core architec-
ture of the BScope system has been designed independently
of this application domain. The same system could be used
with minor modifications in other domains such as security,
workplace safety, entertainment and more with a diverse set
of sensing modalities. In our pilot deployment cameras were
utilized for monitoring a person inside a house because of the
rich information and large coverage they provide. However,
any other collection of sensors (i.e. RFIDs, ultra-wideband,
break-beam, water, contact, pressure etc.) could be used in-
stead of cameras, with no changes in the architecture or the
specified grammar definitions.

In the system description that follows the sensor data is
centrally processed. This process, however, can take place
anywhere in the sensor network as was intialy suggested in
[reference withheld]. A scheme for distributing and map-
ping grammar hierarchies on the network has already been
devised and will be presented in a future publication.
2.2 Probabilistic Context-Free Grammars

(PCFGs)
A probabilistic context-free grammar G [18, 9] is an or-

dered five-tuple 〈VN ,VT ,Start,Pr,P〉 where:
• VN is a finite set of non-terminal symbols.

• VT is a finite set of terminal symbols.

• VN ∩VT = /0. V = VN ∪VT is called the vocabulary.

• Start ∈VN is the start symbol.

Figure 1. A typical bathroom layout.

• Pr is a finite nonempty subset of VN ×V ∗ called the
production rules.

• The production rules are paired with a set of probabili-
ties P = {pi j} that satisfy the following rules:

1. For each production Pi j ∈ Pr there is one and only
one probability pi j ∈ P.

2. 0 < pi j ≤ 1,∀i, j

3. For every i with 1 ≤ i ≤ |VN |: ∑1≤ j≤ni pi j = 1,
where ni is the number of productions with the ith
non-terminal on the left-hand side.

Let capital letters: A,B,C, . . . represent the non-terminal
symbols and small letters: a,b,c, . . . represent the terminal
symbols. The production rules of a context-free grammar
are then written as: A → a(0≤p≤1), where the left-hand side
can be any non-terminal symbol and the right-hand side can
be any combination of terminal and non-terminal symbols.
The exponent p denotes the probability assigned to the pro-
duction rule.

Starting from the start symbol Start and by successively
applying the same or different production rules, different
strings can be generated. In general, we say that string
α derives string β (α ⇒ β) if there is a sequence: α =
α0,α1,α2, . . . ,αn = β,n ≥ 0, of strings in V ∗ such that:
α0 ⇒ α1,α1 ⇒ α2, . . . ,αn−1 ⇒ αn. The language L(G) gen-
erated by a probabilistic context-free grammar G is the set:
L(G) = {x|Start ⇒ x,x∈V ∗

T }. In other words, L(G) is the set
of all terminal strings derivable from the start symbol Start.

Since every production rule is assigned a probability, any
string of terminal symbols derivable from the Start sym-
bol is assigned a probability. The basic assumption is that
the choice of production rules used in deriving a sentence is
“context-free” in the sense that each rule is chosen indepen-
dently of all the others in the derivation. This allows us to
compute the probability of a sentence as the product of the
production probabilities that were used to generate this sen-
tence. If the same sentence can be derived in more than one
ways then the derivation with the highest probability wins.
For instance, given the following PCFG:

VT = {a,b} , VN = {A,B} Start → A(0.5) | B(0.5)

A → Aa(0.5) |ab(0.5)

B → Bb(0.5) |aba(0.5)

the string of terminals “aba” can be derived from the Start
symbol in two different ways:
(1): S→A(0.5)→Aa(0.5)→ aba(0.5) , with a derivation prob-
ability of: 0.53 = 0.125

Input: Any sequence of the phonemes:{TO ,SI ,TW}
Output: A sequence of any of the following non-terminal
symbols: {NormalBathVisit, IncompleteBathVisit}

1. VN = {Start,NormalBathVisit,
IncompleteBathVisit}

2. VT = {TO,SI,TW}
3. Start → NormalBathVisit | IncompleteBathVisit
4. NormalBathVisit → TO SI TW |TO SI
5. IncompleteBathVisit → TO

Figure 2. A grammar for identifying bathroom visits.
(2): S → B(0.5) → aba(0.5) , with a derivation probability of:
0.52 = 0.25
In this case the most probable derivation of the input is the
second one and therefore the input sequence is mapped to
the nonterminal “B”. Note, that by changing the probabilities
assigned to the production rules, we can change the most
probable parse of the input.

In the rest of the paper we do not focus on demonstrating
the probabilistic inference of grammars. Instead, we empha-
size on how to write a grammar and on how to properly con-
figure the proposed architecture to support multiple, cuncur-
rently running grammars. As a result of this and to simplify
our discussion, we will always assume a uniform probability
distribution for the production rules and the actual probabil-
ities will not be shown. However, a rigorous example that
demonstrates the probabilistic inference of grammars can be
found in [reference withheld].

3 The Sensor Network As An Interpretation
Engine

3.1 Encoding Sensory Information
According to the formal definition given in the previous

section, grammars are defined on top of a finite set of dis-
crete symbols called terminal symbols. In the case of sensor
networks, this set of discrete symbols corresponds to the de-
tected sensing features that we call phonemes. Raw data col-
lected from the sensors is directly mapped into phonemes:
a set of symbols that imply high degree of correlation to
the specific action we wish to identify. For instance, con-
sider the case of monitoring the bathroom visits of an elderly
person living alone in a house. Given the bathroom layout
shown in Figure 1, we would like to identify when and how
this person is actually using the bathroom. In a typical sce-
nario the elderly person would initially visit the toilet, then
the sink to wash hands and he would finally dry his hands
using one or more towels. This high level specification of
a bathroom visit can be directly mapped to a very simple
grammar description. The phonemes over which this gram-
mar is defined will be the toilet, sink and towel areas that
we denote with the symbols TO, SI and TW respectively.
The actual grammar definition is shown in Figure 2. Two
types of bathroom visits are defined: NormalBathVisit and
IncompleteBathVisit. The former has two possible defini-
tions. It is described either as the ordered sequence of the
toilet, sink and towel phonemes or as the ordered sequence
of the toilet and sink phonemes. The second definition is
used to identify the cases where the person chooses to dry
his hands outside the bathroom. The IncompleteBathVisit is
defined as a single appearance of the toilet phoneme and it

can be used to remind the elder person to wash hands before
leaving the bathroom.

In the same way we can identify toilet activity we can also
identify shower activity. All we have to do is expand the set
of phonemes to include the shower area phoneme (denoted
with the symbol SH) and add the following production rule:

ShowerVisit → ShowerVisit SI |ShowerVisit TW |SH TW
According to this definition, the core of a shower visit is de-
fined as first using the shower and then a towel to dry the
body. However, this definition is using recursion to be able
to identify more general shower visits where one first takes
a shower and then have visits to the sink to perform another
activity such as brushing his hair, shaving etc.

In our simple example, the areas of interest inside the
bathroom became the actual phonemes. To detect other ac-
tivities we may need to specify a different set of phonemes
that provide us with rudimentary information about the activ-
ity. For instance, in the case of home monitoring, we would
like to monitor the usage of basic rooms such as kitchen,
bathroom, bedroom, living room, etc. If we require a finer
level of sensing granularity we might want to monitor spe-
cific areas in a room such as the stove, the dinning table, the
refrigerator or the sink inside the kitchen. These phonemes
could be used in many different ways to describe basic activ-
ities that take place inside a house.

In general, in the context of our system behaviors are
defined as a set of actions in space and time. The goal of
phoneme generation is to instrument the environment with
an appropriate set of sensors so that a string of phonemes
containing information about specific behaviors can be ex-
tracted. The application designer is free to choose a het-
erogeneous set of sensors to extract an appropriate set of
phonemes from the environment. For example, the same
area phonemes we have previously defined could be gener-
ated with a heterogeneous set of sensors. The toilet phoneme
(TO) could be detected by associating location information
to a building map or by using a variety of other sensors such
as, pressure, contact or PIR sensors. In the same way, the
shower and sink phonemes (SH and SI) could be detected by
using contact or water sensors. In general, in a home set-
ting, one could use a variety of sensors ranging from RFIDs
to door and current sensors to generate phonemes about the
interaction of people with objects in their immediate envi-
ronment, generate opening and closing phonemes and detect
appliance usage.

All these different types of phonemes form the vocabulary
that allows us to specify human behavior languages, by pro-
viding a powerful sensing abstraction that enables the use of
a heterogeneous set of sensors to extract information about
an activity. The power of the abstraction comes from the fact
that it hides the complexity of sensing at a lower layer, and
thus does not require us to fuse sensor measurements from
multiple modalities.
3.2 System Process Overview

Figure 3 depicts the main datapath of the proposed system
architecture. The time-stamped raw sensor data, collected
by the sensor network, passes through two main process-
ing blocks. The first block is the phoneme filter that com-
bines raw sensor data with a set of user-specific phoneme

Phoneme
filter

Interpretation
engine

Grammar
Defintions

Context
Info

Phoneme
Definitions

Spatio-temporal
database

Behavior
summaries

&
notifications

Sensor
Data

Phonemes

(optional)

Figure 3. Data interpretation process

definitions and context information, such as buidling maps,
to generate a stream of time-stamped phonemes. The sec-
ond block passes the incoming phoneme stream through a
set of hierarchical probabilistic parsers defined by the pro-
grammer. These parsers automatically discover spatiotem-
poral phoneme patterns and create higher level, meaningful
summaries of activities. At the same time, they detect actions
of interest or alarms and they trigger user-specific e-mail or
cell-phone notifications.
4 Related Work

As in the Semantic Streams work presented in [6] the sys-
tem presented here generates a set of intermediate level se-
mantics from raw sensor measurements. Our handling of the
data across a hierarchy of grammars is similar to the notion
of having semantic streams. Our approach however is dif-
ferent in the sense that it provides a structured bottom-up
processing of the sensor data that is not application specific.
In contrast, the Semantic Streams work follows a top-down
approach that focuses more on the end-user programming in-
terface of the sensor network rather than the actual inference
engine that generates the high level semantics on which the
programming abstraction is based.

The interpretation of human activity has been previously
considered in assisted living applications. Researchers at In-
tel Research have considered assisted living applications us-
ing RFID tags [11, 8, 5, 4, 7]. This approach requires a per-
son to wear an RFID reader and extensive tagging of objects
or people with RFID tags. Other researchers, attempted sim-
ilar monitoring with video cameras [14]. While our work
is absolutely compatible and it could be transparently used
with these types of network setups, it makes a significant
contribution: it provides a common, structured framework
for describing and identifying spatiotemporal patterns in low
level sensor data.

Probabilistic grammars, the centerpiece of our system,
have been previously successfully applied by computer vi-
sion researchers to detect persons that are picked-up or
dropped-off in a parking lot [15], identify human gestures
[2], recognize high-level narratives of multi-player games
and player’s strategy [16], and to classify different types of
interactions(dancing, hugging etc) between two people [17].
What has not been done before is: (1) the application of such
grammars on multimodal sensor networks, and the creation
of a hierarchy that reduces reasoning training requirements
and (2) the design of an architecture with space and time
conventions that can be directly used by grammars.

Sensor networks for abnormal activity detection have also

been proposed [12, 10] . In this approach, statistical analy-
sis of long-term real data is used to define what a “normal”
activity is. Every activity that deviates from the “normal”
activity profile is considered to be “abnormal”. While this
method can be useful, it does not provide enough informa-
tion about the exact service that has to be triggered by the
system. Different types of abnormal activities require differ-
ent types of services to be triggered. Furthermore, in many
cases it is very useful to be aware of the exact activities of a
person even though these activities are not considered to be
“abnormal”. For instance, a sensor network that can under-
stand human behaviors could be used to assist elders living
alone in multiple ways. It could post reminders and provide
warnings when someone engages in unsafe behaviors.

4.1 Our Work
The purpose of our system is to hide the low level de-

tails of the sensor network by exposing a high level interface
where multiple users can quickly describe their own activi-
ties of interest in a script-like form. This allows the infer-
ence engine of the sensor network to become easily config-
urable and scalable supporting various types of applications
and users. In that way, the proposed architecture can be used
to generate multiple system instances for different applica-
tions while providing a common, powerful interface.

At the same time, the syntactic pattern recognition ap-
proach that our system adopts, enables the users to exploit
the structure of the activities that have to be identified. In-
stead of “blindly” training a tool to recognize an activity
based on statistical data associations we provide a method for
defining an activity syntax over sensor data. This approach
reduces the training requirements by giving more control to
the actual programmer to define the internal structure of each
activity. However, this does not limit our training capabili-
ties by any means. When training is required, probabilistic
grammars offer the same trainining capabilities as HMMs or
similar pattern recognition tools [9, 13].

5 Considering Space and Time
According to the description provided in Section 3.1,

phonemes are nothing more than a discretization of the ob-
served human activities. In general, human activities are ex-
panded over two dimensions: space and time. Discretiza-
tion of space can be achieved if absolute or relative location
information is associated to building map information. Us-
ing this approach, human activities can be expressed as a
trace of spatial phonemes over time. Time discretization,
on the other hand, is not straightforward. Time can only
be discretized by using numerical values that represent ei-
ther actual timestamps or time duration between successive
timestamps. However, grammars (as well as HMMs) do not
provide the necessary formalism for manipulating numeri-
cal values. Grammars operate on a set of symbols and they
can only check the validity of different sequences of these
symbols. Attributes of these symbols, such as numerical val-
ues, cannot be internally handled unless a different symbol
is defined for every different numerical value. Obviously,
this approach is feasible only when a single time scale repre-
sentation is required across all diferent grammar hierarchies.
However, different grammars often require representation of

time at different scales depending on the application they
focus on. This requirement leads to a large number of in-
put symbols that makes the process of defining and running
grammars infeasible. Thus a more suitable abstraction of
time is required.

For instance, consider the following example where a sen-
sor network is deployed inside a house to monitor an el-
derly person that lives alone. Several grammars running in
the system monitor different activities of that person includ-
ing, cooking, sleeping, visiting the bathroom, etc. At the
same time, another set of grammars is used to identify emer-
gency situations and generate alarms. In the case of cooking
activity detection, the timing information needed can vary
from minutes up to hours depending on the meal that is pre-
pared. The sleeping grammar requires time information that
can vary from approximately 30 minutes to 8 or 10 hours.
The grammar used for monitoring bathroom usage might re-
quire time information in the order of seconds or tens of
minutes. On the other hand, the grammars used for emer-
gency condition detection can use a different time scale to
generate alarms using the same spatial phonemes as the pre-
vious grammars. For instance, if the person has been in the
bathroom for more than an hour then most probably some-
thing is wrong. In the same sense, if no movement has been
detected for more than 30 minutes in the house and the per-
son is not sleeping then an alarm should be generated. Based
on this simple example it is clear that:
(1) Time information plays an important role in the recog-
nition of human activities. The same sequence of spatial
phonemes might be interpreted in a different way based on
the time associated to it.
(2) Different time scales with large variations have to be con-
currently supported.
5.1 Time Augmented Grammars

The BScope system implements a user-configurable and
grammar independent time abstraction layer that transpar-
ently enables the concurrent support of multiple time scales.
Instead of trying to directly discretize time space and feed it
as input to grammars, we associate time information to spa-
tial phonemes before grammar execution. Time information
is used in the time abstraction layer to generate spatiotem-
poral symbols based on user-specific parameters. This ap-
proach, encodes space and time information into symbols
outside the grammar and on a per-grammar basis providing
two main advantages:
(1) Since the input symbols encode both time and space in-
formation, grammars can easily generate higher-level spa-
tiotemporal semantics without having to explicitly parse time
information.
(2) The time abstraction layer decouples the different time
scales that the system has to support from the time scale that
a specific grammar requires. In practice this means that the
grammar designer has to worry only about the time scale that
his grammar requires and nothing else.
As a result of this, the number of different symbols that a
grammar is defined upon is dramatically reduced facilitating
the process of describing and running grammars.

Figure 4 shows a high-level overview of the timing ab-
straction mechanism in the BScope system. Area phonemes

Area Phonemes

Time Abstraction layer

Timestamps

<Start,End>
SpatioTemporal

Phonemes

Grammar
Execution

Interpreted
Semantics

Time Association

Figure 4. Overview of the time abstraction layer.

along with their timestamps are provided to the time abstrac-
tion layer which transforms them to spatiotemporal symbols
according to user-specific rules. The new spatiotemporal
symbols have both start and end timestamps that define their
time duration. Note, that only the spatiotemporal symbols
are fed as input to the grammar. The pairs of timestamps for
each input symbol are used to derive the ground truth start
and end timestamps for the generated higher level seman-
tics. The fact that the output semantics of every grammar
are mapped to ground truth time facilitates the creation of
time-based semantic hierarchies. In practice, this means that
a grammar can always associate time information to its input
phonemes independetly of its position in the hierarchy. In
that way, time information is hierarchicaly associated to in-
put phonemes creating a hierarchical spatiotemporal seman-
tic generation mechanism.

To better illustrate the capabilities and flexibility of the
proposed time abstraction layer let us consider again the ex-
ample grammar specification shown in Figure 2. While this
grammar can provide information about how often a person
visits the toilet, it cannot provide any information about the
length of individual bathroom visits. For instance, when an
elderly’s person visit to the toilet lasts more than 15 minutes,
then that person either has difficulties getting up or is sick.
Using the features of the timing abstraction layer we can eas-
ily add temporal information to the detected semantics while
minimizing the changes in the actual grammar configuration.
Figures 5 and Figures 6 provide two different alternatives.

In Figure 5, time information is encoded to the actual in-
put phonemes as Lines 1 and 2 show. These two lines are not
part of the grammar description. Instead, these two lines pro-
vide configuration parameters to the time abstraction layer.
The first line, defines a time condition on the input sym-
bol TO according to which, every TO phoneme with du-
ration period longer than 900 seconds will be renamed to
TO LONG. Note that now, the TO LONG phoneme en-
codes both spatial and temporal information. Line 2, in-
structs the time abstraction layer to pass to the grammar
only those phonemes that satisfy at least one of the previous
Time Replace statements. This will result in ignoring all the
TO phonemes with duration time less than 900 seconds. In
that way, only the detected TO LONG phonemes will be fed
as input to the grammar. The rest of the lines in Figure 5

Input: Any sequence of the phonemes:{TO ,SI ,TW}
Output: A sequence of any of the following non-terminal
symbols: {NormalBathVisit, IncompleteBathVisit}

1. Time Rule : TO > 900 → TO LONG
2. Use Time Phonemes Only : Y ES
3. VN = {Start,NormalBathVisit,

IncompleteBathVisit}
4. VT = {TO LONG,SI,TW}
5. Start → NormalBathVisit |

IncompleteBathVisit
6. NormalBathVisit → TO LONG SI TW |

TO LONG SI
7. IncompleteBathVisit → TO LONG

Figure 5. Time augmented grammar for identifying ab-
normally long bathroom visits.

Input: Any sequence of the phonemes:
{Normal , Incomplete}
Output: Any of the following non-terminal symbols:
{NormalLongBathVisit, IncompleteLongBathVisit}

1. Time Rule :
NormalBathVisit > 900 → Normal

2. Time Rule :
IncompleteBathVisit > 900 → Incomplete

3. Use Time Phonemes Only : Y ES
4. VN = {Start,

NormalLongBathVisit,
IncompleteLongBathVisit}

5. VT = {NormalLongBathVisit,
IncompleteLongBathVisit}

6. Start → {NormalLongBathVisit |
IncompleteLongBathVisit}

7. NormalLongBathVisit
→ Normal

8. IncompleteLongBathVisit
→ Incomplete

Figure 6. Using a second level grammar for identifying
abnormally long bathroom visits.

are identical to the initial grammar definition. The only dif-
ference now, is that the grammar operates on the TO LONG
phonemes instead of the TO phonemes. As a result of this,
the output of the grammar shown in Figure 5 will include
only those toilet visits that are abnormally long.

Another way to achieve the same functionality is shown
in Figure 6. In this case, an additional grammar is created
that receives as input the output of the grammar shown in
Figure 2. Time information is now directly associated to the
input phonemes of the second level grammar in exactly the
same way as before. Note, that the new grammar definition
turns into a trivial symbol renaming procedure due to the fact
that all the low level details are taken care of by the timing
abstraction layer.

More elaborate examples of using the time abstraction
layer are given in the next section.

6 BScope Interpretation Engine
The BScope system provides a high-level interface that

enables the programmer to write, configure and execute
grammar hierarchies in a very simple way. In order for a
user to insert a new grammar hierarchy into the system and
execute it, the following steps are required:
(1) Specify a single file that provides the exact grammars to
be run and the order at which they should be run.

(2) Provide the actual grammar definitions.
(3) Specify a single file describing the input/output of each
grammar.
(4) Specify a set of triggers and associate it to one or more
grammar hierarchies. Every time that a hierarchy produces
an output semantic, all the triggers associated to this hier-
archy will be fired. In the current implementation, users can
provide their e-mail address and/or cell phone number where
a message will be automatically sent including important in-
formation about the detected semantic (i.e. time duration
etc.).

Given these four pieces of information the BScope system
is able to automatically:
(1) Filter the input stream of phonemes to ensure an appro-
priate input for the grammar.
(2) Create the parsers for every grammar definition and run
them with the appropriate input.
(3) Connect the grammars into a hierarchy.
(4) Plot the output of grammar hierachies and trigger notifi-
cations on the detection of semantics of interest.
This process is shown in detail in Figure 7. The program-
mer is only responsible for providing a collection of gram-
mar hierarchy definitions along with a set of configuration
parameters. The BScope engine is continuously monitor-
ing the database for new phonemes detected by the sensor
network. As new phonemes become available they are first
passed through a generic filtering stage. The purpose of this
stage is to deal with the uncertainty of the underlying sens-
ing layer. Several false positives are removed at this step
and the length of the phoneme sequence is minimized to
reduce grammar execution time. This is done by remov-
ing redundand occurences of phonemes. At the same time,
the initial input sequence of phonemes is broken into mul-
tiple grammar-specific phoneme sequences. The grammar-
specific phoneme sequences contain only those phonemes
that the corresponding grammar can actually handle. At
the next level, time information is assigned to the phoneme
streams and time-based filtering takes place according to the
parameters that the programmer passes to the system. After
this step, every phoneme stream is assigned to a grammar
parser and starting from level 1, all parsers in all hierarchies
are executed. The output of each hierarchy first goes through
a notification trigerring mechanism. Bscope searches if the
detected activities match activities of interest defined by the
programmers and if this is true the user-defined notifications
are triggered. Finally, the outputs of all the grammars are
plotted into a single summary-plot. In that way hundreds of
thousands of phonemes can be automatically translated into
a small summary of activities and a small number of notifi-
cations.
6.1 BScope Configuration

Programmers can configure the BScope interpretation en-
gine to preprocess the input phoneme streams on a per-
grammar basis. This is done by using a set of pre-defined
configuration parameters. Every grammar description is as-
sociated to a configuration file that contains lines of the form
“<parameter name>: <data>”. The purpose of these para-
meters is to give the ability to the programmer to configure
the BScope engine according to the needs of his grammar

Phoneme Filtering

Grammar: Level1
Grammar: Level2
Hierarchy: Grammar2
...

hierarchy

Grammar_Level_1
Phonemes: P1 P2 P3 …
Repeatrer: YES
… … …
Output: Semantic1, Semantic2, ...

config

… … ...

Grammar Execution

Activity Plotting & Notification Trigerring

<Grammar1>_hierarchy

… … ...

User Input

BScope’s
Engine

BScope’s
Output

Level1_grammar

Level2_grammar

Grammar: Level1
Grammar: Level2
Grammar: Level3
...

hierarchy

Grammar_Level_1
Phonemes: P1 P2 P3 …
Repeatrer: No
… … ...
Output: Semantic1, Semantic2, ...

config

… … ...

<Grammar2>_hierarchy

Level1_grammar

Level2_grammar

phonemes

timestamps

Database

Time Abstraction Layer

Time Association

Figure 7. Overview of the BScope’s interpretation engine.

without forcing him to actually modify the interpretation en-
gine of the framework.

We present the available parameters and their effect on
the input of a grammar through two examples: the bathroom
grammar shown in Figure 5 and the stairs activity grammar
shown in Figure 9. The configuration files for both grammars
can be seen in Figures 8 and 10 respectively. The following
six parameters are defined:
Phonemes: this parameter defines which of the available
phonemes are of interest to the grammar. In the case of
the bathroom grammar the phonemes TO, SI and TW are
of interest since they represent the toilet, sink and towel
areas respectively. In the case of the stairs grammar the
phonemes of interest are the DOWN and UP phonemes de-
noting the bottom and top areas of the stairs. In practice, this
parameter instructs the BScope engine to create a grammar
specific phoneme stream for every grammar where only the
phonemes of interest are included.
Output: this parameter defines the output semantics pro-
duced by the grammar. In the case of the bathroom grammar,
NormalLongBathVisit and IncompleteLongBathVisit are the
produced semantics. Note, that the list of output semantics
can be a subset of the semantics generated by the grammar.
This would force the BScope engine to remove any detected
semantics that are not specified in the “Output” parameter
from the grammar’s output. For instance if we wouldn’t like

bathroom grammar configuration file
Phonemes: TO SI TW
Merge Consecutive Phonemes: NO
Keep Last Phoneme: NO
Repeater: NO
Use Time Phonemes Only: YES
Time Rule: TO > 900 TO LONG
Output: NormalLongBathVisit IncompleteLongBathVisit

Figure 8. The configuration file for the bathroom moni-
toring grammar.

the NormalLongBathVisit to appear in the output of the sys-
tem, all we have to do is remove it from the Output statement
without changing the actual grammar definition.
Repeater: when this parameter is set the input is fed to the
grammar through a repeater. This process converts the input
sequence of phonemes into a new one where every phoneme
in the intial input sequence, except the first and last ones, is
duplicated. This functionality is extremely important when
every phoneme has to be matched with both its immediately
previous and next phonemes. For instance, in the case of the
stairs activity example, a typical input phoneme stream could
be the following: DOWN UP DOWN. This input should
be mapped to the following output: MoveU p MoveDown.
However, given the input and the stairs grammar definition
the desired output will never be provided unless the input is
first passed through a repeater. Now the output of the re-
peater: DOWN UP UP DOWN can be sucessfully mapped
to the desired output by matching the first two phonemes
into a MoveUP activity and the last two phonemes into a
MoveDown activity.
Merge Consecutive Phonemes: After creating a grammar-
specific phoneme stream according to the “‘Phonemes” pa-
rameter, phonemes might not be continuous in time. When
this parameter is set, consecutive appearances of the same
phoneme are grouped into a single phoneme even if these
phonemes were not recorded at consecutive time instants.
The duration of the new phoneme becomes the sum of the
durations of the merged phonemes. This parameter is used
to minimize the size of the grammar input when fine-grained
timing is of no importance to the actual grammar.
Keep Last Phoneme: This parameter is used only when the
“Merge Consecutive Phonemes” parameter is set. When it
is set, it has the same effect with the “Keep Last Phoneme”
parameter with the difference that the time duration assigned
to the phoneme produced by the merging process is equal to
the time duration of the last merged phoneme. When this
parameter is not set it has absolutely no effect on the input.
Time Rule: this parameter is used to define time
rules based on the duration of a phoneme. Every
“Time Rule” statement has the following for-
mat: <original phoneme> <comparison operator>
<duration in seconds> <new phoneme>. If the du-
ration of the <original phoneme> satisfies the time
condition then the <original phoneme> is replaced by
the <new phoneme>. In the case of bedroom gram-
mar, any appearance of the toilet phoneme TO that has
a duration equal or larger to 900 seconds is replaced by
the spatiotemporal phoneme TO LONG. Note that when
<duration in seconds> is equal to 0 a time rule is basically
a renaming rule. This can be very useful when one or more

Input: Any sequence of the phonemes:{DOWN ,UP}
Output: A sequence of any of the following non-terminal
symbols: {MoveU p,MoveDown}

1. VN = {Start,MoveU p,MoveDown}
2. VT = {DOWN,UP}
3. Start → MoveU p |MoveDown
4. MoveU p → DOWNUP
5. MoveDown → UPDOWN

Figure 9. Grammar definition for detecting stair traver-
sals.

stairs grammar configuration file
Phonemes: DOWN UP
Merge Consecutive Phonemes: YES
Keep Last Phoneme: YES
Repeater: YES
Use Time Phonemes Only: NO
Output: MoveUp MoveDown

Figure 10. The configuration file for the stairs grammar.

phonemes are translated in exactly the same way by the
grammar. In this case, the renaming rule can be used to
map all these phonemes to a single one, thus facilitating the
grammar definition.
Use Time Phonemes Only: when this parameter is set only
the phonemes that were generated by the “Time Rule” state-
ments (<new phoneme>) are considered to be valid input
for the grammar. When this parameter is not set, the valid set
of input phonemes is expanded to include all the phonemes
that were not mapped to a new spatiotemporal phoneme. For
instance, in the case of the bathroom grammar shown in Fig-
ure 5, disabling the “Use Time Phonemes Only” parameter
would result in providing as input to the grammar two types
of toilet phonemes. All the toilet phonemes with a duration
that exceeds 900 seconds will be mapped to a TO LONG
phoneme and all other toilet phonemes will still be respre-
sented by the initial TO phoneme. In that way, we can easily
expand the grammar to identify both normal and abnormally
long bathroom visits by also parsing all the TO phonemes.
6.2 Run-Time Grammar Execution

An important challenge in designing the Bscope system
is the ability to know when parsing has to take place. Since
the input phoneme stream generated by the sensor network
is continuous in time, a way to know when to stop acquir-
ing new phonemes and parse the buffered input is required.
Providing a generic solution to the problem is difficult due to
the fact that different grammars have different input require-
ments. The proposed architecture addresses this problem by
allowing the user to guide the chunking process on a per-
grammar basis. In particular, another parameter called “Ex-
ecute Condition” is introduced. Every Execute Condition
parameter consists of one or more tuples of the form: <
Phoneme >< number >. The < Phoneme > can be any in-
put phoneme. The < number > represents the required num-
ber of appearances of the < Phoneme > in the input stream,
so that the grammar can be safely run. When more than one
tuples are given in one Execute Condition statement, the log-
ical OR of all tuples is computed. When more than one Exe-
cute Condition parameters are defined then the input is con-
sidered to be valid only if all the Execute Condition para-
meters are satisfied (logical AND). For instance, in the case
of the stairs grammar (Figure 9), the input is considered to

Grammar Independent Filtering

phonemes
timestamps

Database

Grammar Specific Filtering

User-Defined
Grammar

Configuration

Execute Conditions Check

Run Grammar

Check
passed?

Read Input

Buffered
Input?

YES

NO

Hard Disk

NO

YES

Buffer Input

Input Merging

Plot OutputLast
Level?

YESNOTo The Next Level

Time
Preservation

Check

Previous
LevelOR

Figure 11. Overview of the Bscope run-time architecture.

be valid when it contains at least one DOWN and one UP
phonemes:
Execute Condition : DOWN 1, Execute Condition : UP 1

Figure 11 provides an overview of the BScope’s run-time
architecture. If the filtered phoneme stream satisfies the Ex-
ecution Condition statements described in the grammar con-
figuration file, the grammar is run. Otherwise, the output of
the filtering stage is temporarily buffered until more input
phonemes are generated in the database. Every time a new
sequence of phonemes passes through the filtering stage, the
system automatically checks if there is previously buffered
input. If this is true, the system merges the old and new
phoneme sequences based on the parameters set by the user
in the grammar configuration file and then the grammar is
run.
6.3 Implementation

The BScope architecture has been fully implemented in
Python. The goal of this implementation was to simplify
and automate the interaction of the programmer with both
the system itself and the sensor network data. Programmers
add new grammar hierarchies through an intuitive graphical
user interface that guides them step-by-step through the nec-
essary procedure. First they are prompted to enter the con-
figuration parameters that the BScope engine has to be aware
of and then they enter the production rules of a grammar in
the same format as Figure 2 shows. All the configuration
files and low level details are automatically taken care of by
the system. Figure 12 shows the main control panel of the
BScope system. Users can choose the database where the
sensor network data is stored and specify a time window that
they want to focus on. In this specific example, two grammar
hierarchies for monitoring bedroom and bathroom activity
were selected to run. At the same time a single notification
request has been inserted to the system. Every time the bed-
room hierarchy produces a semantic, an e-mail as well as a

Radio Camera…

SOS

Windowing

Image
Format

Conversion

Image Acquisition and
Memory Management

Temporal
Differencing

ReSampling

Power Management

Timers HAL

OS

Basic Image
Hanlding

Image
Processing

Application Monitoring

Application
Layer

Application
Supervisor

Feature Extraction

Filtering & Processing

Networking

Time Synchronization

Figure 13. Sensor node software stack.

cell-phone text message is sent including information about
the specific semantic that was detected and its duration. Fig-
ure 12, shows the run-time output (the input phonemes were
processed in an online manner) of the system on a 4 days
window. On the top right, debug and state information of
the Bscope Engine is displayed at run time. A list showing
all the detected semantics, the grammar from which these
semantics were produced and their ground truth time dura-
tion follows. At the bottom right, an entry is created every
time the BScope system triggers a notification. Note that in
the case of the 4 days window, four sleeping activities were
detected and therefore four notifications were generated.

7 Asssisted Living Deployment
To evaluate the BScope system in a real environment we

created a pilot camera sensor network deployment in a two-
floor house. Five Intel iMote2 [1] sensor nodes sporting a
COTS camera module we have designed for this application
and a single basestation node were deployed in the house for
25 days using the configuration shown in Figure 14. The
camera nodes are attached to the ceiling with the camera
lens pointing down into the room. Each camera node (Fig-
ure 13) features an OV7649 VGA camera from Omnivision
coupled to a 162 degree lens. The PXA271 processor aboard
the iMote2 runs the SOS operating system from UCLA [3]
in which we have implemented the corresponding camera
drivers, a small image processing library and the software re-
quired by the BScope system(Figure 13). This camera node
acquires images at 8 frames per second, downsamples them
to a 80×60 resolution and uses a lightweight image process-
ing algorithm to extract the location of a person inside the
house.

To ensure that the ordering of measurements from differ-
ent nodes is preserved, we have also implemented a light-
weight time-synchronization mechanism that synchronizes
the real-time clocks (RTCs) of all the nodes to that of the
base station node within 1 second of accuracy. All the
timestamped locations are routed back to the base station
node and they are stored into a database. The software run-
ning on the basestation is also responsible for tracking the
state of each sensor node in the system. To make this possi-
ble, when a node has no data to transmit, it periodically trans-
mits a HEARTBEAT message that contains statistics locally

Figure 12. The main control panel of the Bscope System. Some fields have been blurred to preserve author’s anonymity.

recorded at the node. These are collected at the basestation
and compared against the statistics observed at the basesta-
tion to determine where packet losses occur in the system.
7.1 Network Statistics

Over the course of 25 days, approximately 1.2 million
packets were transmitted from the camera nodes to the base.
Over 200 thousand packets carried more than 1.3 million lo-
cation measurements that were directly converted to approx-
imately 444 thousand phonemes.

From the data transmitted in the heartbeat packets, Fig-
ures 16 and 17 can be computed to show a diagnostic of
the network over the duration of the experiment. Figure 16
shows the number of dropped centroid packets for each node.
Drop rates increase with the distance from the base for all
nodes except node 4, which showed the worst drop-rate de-
spite being the closest to the base. It is also worth noticing
that the centroid packets are dropped in sudden bursts, and
that these bursts usually occur simultaneously on multiple
nodes. This correlation is more obvious on nodes that are
geographically close, such as nodes 4 and 10. These ob-
servations point to the conclusion that centroid packets are
dropped when events span multiple nodes at the same time,
causing many packet collisions. This is more intense on the
nodes near the base, as expected.

Meanwhile, Figure 17 paints a different picture: heartbeat
drop rates are not bursty like centroid drop rates, but rather
smooth instead. Moreover, nodes 10, 12 and 15 exhibit sim-
ilar behavior, dropping around 4000 packets each. Node 4
experiences a large spike in dropped heartbeats between 03-
14 and 03-15, but afterward follow a pattern akin to that of
node 6. There were close to 23 thousand dropped centroid
packets making up 10.2% of all attempted centroid trans-
missions. Since heartbeats are only sent when there is no
centroid activity, and since they are transmitted in relatively
sparse intervals, the smaller number of dropped heartbeats
(around 16.5 thousand, or 1.56% of all attempted transmis-

sions) seems to agree with the analysis that the major culprit
of packet drops is packet collisions. However, even under
the presence of these issues, we now show how the BScope
system can automatically recognize faulty operation.
7.2 Grammar-Based System Consistency

Checking
While according to Figures 12 and 15 the network seemed

to operate correctly, we had no indication of the correctness
of the results even though we knew that sensing, process-
ing or network errors could significantly impact the results.
After a careful examination of the ground truth data we had
collected, we were able to identify several errors that affected
the correctness of our network’s output. Even though it was
quite difficult to identify the exact sources of these errors, it
was obvious that the output of the system was altered. How-
ever, even then we were only aware of the existence of faults
in the system at a specific time instant. We were still unable
to answer a list of very important questions:
• Which outputs where affected by these faults?

• When were these outputs affected?

• How can we know when future outputs of the system
are affected by these or even new faults introduced into
the network?

To provide a structured mechanism for describing and
running system validation checks we expand the proposed
architecture into an automated, in-situ network verification
tool. The users describe network verification models in high
level scripts in exactly the same way that they would de-
scribe human activities. These descriptions use phonemes
recorded on the sensor nodes to verify if the network is op-
erating according to the design specifications. The type of
phonemes used can vary among different networks and ap-
plications but, in general, it can be classified into two broad
categories: data and metadata. Data corresponds to the ac-
tual phonemes used by the application stack for the detection

(a)House deployment floorplan (b) Nodes 4, 6 deployed (c) The field of view for nodes
4(bottom) and 10(top)

Figure 14. Pilot network deployment overview.

18:00:00

00:00:00

06:00:00

12:00:00

18:00:00

00:00:00

06:00:00

12:00:00

18:00:00

00:00:00

06:00:00

12:00:00

18:00:00

00:00:00

06:00:00

12:00:00

18:00:00

00:00:00

fridge
sink

stove
back door

kitchen table
bath downstairs

basement
couch 2
couch 3

front door
stairs bottom

stairs top
bath upstairs

back bedroom
front bedroom

}
Thursday

}
Friday

}
Saturday

}

Sunday

Waking up and
going to work

}

Monday

Going to bed

At w
ork

At w
ork

At w
ork

Eating

Sleeping

Sleeping

Sleeping

Working on kitchen table
during weekend

Sleeping

Staying in on the
weekend

Figure 15. Various phonemes over a four day period

Figure 16. Dropped centroid packets over the period of
25 days for all 5 nodes.
of activity patterns. Metadata corresponds to the phonemes
specifically recorded to be used for system verification pur-
poses. In practice, users are asked to provide a syntax over a
finite set of phonemes (data, metadata or both) that will de-
termine when the behavior of the network is not consistent
with its design specification. This methodology is analogous
to Natural Language Processing where a grammar is defined
over a set of phonemes to determine what a valid word, sen-
tence and paragraph is. Depending on the type of phonemes
used, system verification at different levels of granularity can
be achieved.

As Figure 18 shows, the data provided by the sensor net-
work is forwarded to the application stack where it is mapped
to application outputs. At the same time, both data and meta-

Figure 17. Dropped heartbeat packets over the period of
25 days for all 5 nodes.
data are processed by the system verification stack, running
in parallel with the actual application stack, to detect system
design violations. At the next level, the system design viola-
tions are mapped to the actual application outputs to identify
and remove possible false positives/negatives and the out-
come of this step becomes the actual system output. It is
important to note here that the user-defined system verifica-
tion models run in parallel with the actual application (Figure
18) and therefore operate on the same real data. This gives
the ability to the network to associate time information to the
detected faults and correlate them with the actual output of
the system in an on-line manner and after the sensor network
has been deployed. Note, that from the system perspective,
there is no difference between system verification and activ-

Wireless Sensor Network

Data Metadata

Application
Stack

System
Verification

Stack

Output Verification

System Output

Figure 18. System Verification Overview.
ity recognition grammars. The only difference is the logical
interpretation of these grammars. In addition, both data and
metadata are nothing more than a finite set of pre-defined
symbols, the phonemes of the system.

A simplified system verification grammar (only a fraction
of the phonemes is used) for the deployment described in
Section 7 is shown in Figure 19. This grammar detects errors
by checking for invalid sequences of phonemes produced by
the sensor network. Initially, the different phonemes, repre-
senting different areas of interest in the house, are grouped
into higher level phonemes that represent different rooms.
This is done by using the Time Replace parameter of the
time abstraction layer. The actual grammar checks if the
input sequence of the visited rooms is valid. For instance,
given the floorplan shown in Figure 14(a), it is impossible to
move from the kitchen to the second floor, where the bed-
room is, without first passing through the living room. In
that way, several areas in the house can be defined as “check-
points” for monitoring the correct operation of the network.
The produced errors can be easily mapped to the activity
semantics produced by the system since all semantics are
mapped to ground truth time. This is be shown in more detail
in the next section.
8 Activity Summaries

Driven by the assisted living application example, we
have designed a set of grammar hierarchies for automatically
generating meaningful activity summaries. In particular, the
following grammar hierarchies have been defined:
Bedroom Activity: A single level grammar hierarchy for
detecting sleeping activity.
Bedroom Duration Activity: A two-level grammar hierar-
chy for categorizing the sleeping activity into short (less than
8 hours) and long (more than 8 hours) based on its duration.
Breakfast Activity: A three-level grammar hierarchy for de-
tecting breakfast activity. At the first level, sleeping activity
and meal preparation is detected. At the second level, the de-
tected sleeping and meal activities are used to identify pos-
sible breakfast activity. At the last level, the time abstraction
layer is used to filter out false positives.
Bathroom Activity: A single level grammar for monitoring
bathroom usage.
Bathroom Activity: A two-level grammar for classifying
bathroom usage into short (less than 15 minutes) and long
(more than 15 minutes) based on its time duration.

Input: Any sequence of the phonemes:{Bedroom,Bath,Couch1,Couch2,
Stove,KitchenTable,Re f rigerator, . . .}
Output: A sequence of any of the following non-terminal
symbols: {Normal,Error}

1. Time Rule : Bedroom > 0 → U pstairs
2. Time Rule : Bath > 0 → U pstairs
3. Time Rule : Couch1 > 0 → LivingRoom
4. Time Rule : Couch2 > 0 → LivingRoom
5. Time Rule : Stove > 0 → Kitchen
6. Time Rule : KitchenTable > 0 → Kitchen
7. Time Rule : Re f rigerator > 0 → Kitchen
8. Use Time Phonemes Only : Y ES
9. repeater : Y ES
10. VN = {Start,Normal,Error
11. VT = {Bedroom,Bath,Couch1,

Couch2,Stove,
KitchenTable,
Re f rigerator, . . .}

12. Start → Normal |Error
13. Normal → U pstairs LivingRoom |

LivingRoom U pstairs |
LivingRoom Kitchen |
Kitchen LivingRoom

14. Error → U pstairs Kitchen |
Kitchen U pstairs

Figure 19. Grammar for detecting system faults.
Floor Activity: A single level grammar hierarchy for mon-
itoring the floor at which the person inside the house is lo-
cated.
System Fault Activity: A singe level grammar for identify-
ing faults in the network by checking for invalid sequence of
phonemes.

Figure 20 shows the run-time output of the first five gram-
mar hierarchies on a 25-day dataset acquired using our pi-
lot camera sensor network deployment(Figure 14). All the
detected activities are represented as waveforms where the
width of each pulse denotes the actual duration of the activ-
ity. The bedroom grammar was able to detect 20 different
sleeping activities in the course of the 25 days. In 2 cases
the monitored person spent his night into another house and
therefore we correctly did not identify any sleeping activity.
For the rest 3 nights we were unable to detect the sleeping
activity due to a malfunction of the node monitoring the bed-
rooms. For 12 nights the person slept at least 8 hours and for
the rest 8 nights he slept between 6 and 7 hours. He had
breakfast only 8 times during this period and he was visiting
the bathroom an average of 6 to 7 times a day (these visits
include any type of bathroom activity such as toilet, shower
etc.). Among these bathroom visits, there was always a visit
right before and after every sleeping activity.

Figure 21 shows the results of running the floor and fault
activity grammars on a smaller time window1. The floor
grammar is consistent with the bedroom grammar in the
sense that for every sleeping activity the person was at the
second floor where the bedrooms are located. However, it
is obvious that in some cases there is unusually dense floor
activity. This dense activity is caused by false positives pro-
duced by the sensor nodes when sudden changes of light-
ing take place (i.e. lights are turned on or off). In this case

1We do not provide the results for these grammars over the 25-
day dataset because the plots are very dense and thus very difficult
to read.

Figure 21. Typical activity after waking up.
phonemes are continuously recorded on both floors result-
ing into a large number of transitions between the two floors.
This conclusion is verified by the fault detection grammar
results. It is obvious that most of the dense floor activity is
classified as erroneous (invalid phoneme sequences). Note
that sudden bursts or node false positives that cause instanta-
neous floor transitions are classified as erroneous.

Overall, using seven grammar hierarchies we were able
to automatically translate over 1.3 million location measure-
ments into a few hundreds of high level activity semantics.

9 Conclusion
In this paper we have presented the BScope architecture

and its ability to classify behaviors using distributed sensors.
Our deployment has demonstrated its use in a practical real-
life application to simultaneously classify human activities
while also conducting consistency checks on the collected
data to verify that the system worked according to our speci-
fications. The embedded consistency check mechanisms can
now inform us about node failures, poor connectivity, and
transient errors that are hard to spot in the collected datasets.
The versatile programming interface and support software
allows quick customization of the system into different house
layouts and a diverse set of applications. The proposed tim-
ing abstraction was operated as expected, but during the
process we found that grammar authoring required some ex-
pertise on the programmer side. Nonetheless, our imple-
mentation achieved its goal of shifting the programming ef-
fort from embedded systems and network programming to
higher level grammar programming thus shifting the exper-
tise requirements to each particular domain. The completed
system described here is currently under deployment in mul-
tiple homes, and soon will be deployed in other applications
different from assisted living. Our future research plan is
to develop mechanisms for automatically mapping grammar
hierarchies on the network topology as well as mechanisms
with which nodes will be able to autonomously decide what
phonemes they should be generating according to a generic
specification.

10 References
[1] L. Nachman. Intel Corporation Research Santa Clara.

CA. New tinyos platforms panel:iMote2. In The Sec-
ond International TinyOS Technology Exchange, Feb
2005.

[2] A.S. Ogale et. al. View-invariant modeling and recog-
nition of human actions using grammars. ICCV’05, Oc-
tober 2005.

[3] Chih-Chieh Han et. al. A dynamic operating system for
sensor nodes. In Proceedings of (Mobisys), 2005.

[4] D. Patterson et. al. Fine-grained activity recognition
by aggregating abstract object usage. In IEEE Inter-
national Symposium on Wearable Computers, October
2005.

[5] E. M. Tapia et. al. Activity recognition in the home
setting using simple and ubiquitous sensors. In PER-
VASIVE 2004, 2004.

[6] K. Whitehouse et. al. Semantic streams: A framework
for the composable semantic interpretation of sensor
data. In Proceedings of EWSN, February 2006.

[7] L. Liao et. al. Location-based activity recognition using
relational markov models. In Nineteenth International
Joint Conference on Artificial Intelligence, 2005.

[8] M. Philipose et. al. Inferring activities from interactions
with objects. IEEE Pervasive Computing, 03(4):50–57,
2004.

[9] S. Geman et. al. Probabilistic grammars and their ap-
plications. In International Encyclopedia of the Social
& Behavioral Sciences. N.J. Smelser and P.B. Baltes,
eds., Pergamon, Oxford, 12075-12082, 2002.

[10] S. Rao et. al. Abnormal activity detection in video
sequences using learnt probability densities. In TEN-
CON, October 2003.

[11] S.S. Intille et. al. Designing and evaluating technology
for independent aging in home. In International Con-
ference oon Aging, Disability and Independence, 2003.

[12] W. Pentney et. al. Unsupervised activity recognition
using automatically mined common sense. In Proceed-
ings of AAAI, July 2005.

[13] R. C. Gonzalez and M. G. Thomason. Syntactic Pattern
Recognition: An Introduction. Addison-Wesley, 1978.

[14] A. Hauptmann, J. Gao, R. Yang, Y Qi, J. Yang, and
H. Wactar. Automated analysis of nursing home obser-
vations. IEEE Pervasive Computing 3.2: 15-21, 2004.

[15] Y. A. Ivanov and A. F. Bobick. Recognition of vi-
sual activities and interactions by stochastic parsing.
IEEE Trans. Pattern Anal. Mach. Intell., 22(8):852–
872, 2000.

[16] D. Moore and I. Essa. Recognizing multitasked activi-
ties from video using stochastic context-free grammar.
pages 770–776, Menlo Park, CA, USA, 2002. AAI.

[17] S. Park and J. K. Aggarwal. Event semantics in two-
person interactions. August 2004.

[18] C. S. Wetherell. Probabilistic languages: A review and
some open questions. ACM Comput. Surv., 12(4):361–
379, 1980.

Figure 20. Activity Summaries. Note, that the duration of breakfast activity seems to be similar to the duration of
the corresponding sleeping activity. This is due to the fact that the breakfast activity is defined as a time-constrained
sequence of sleeping and meal activities. As a result of this, the duration of the breakfast activity becomes equal to the
sum of the duration of the sleeping and meal activities that is composed from.

