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Abstract

In this paper we demonstrate the application of a prob-
abilistic grammar-based formulation to detect complex ac-
tivities from simple sensor measurements. In particular, we
present a grammar hierarchy for identifying “cooking ac-
tivity” from low-level location measurements in an assisted
living application. Using real data from a pilot network de-
ployment, we show that our system can recognize complex
behaviors in a manner that is invariant across multiple dif-
ferent instances of the same activity. Our experiments also
demonstrate that substantial data interpretation can take
place at the node level, allowing the network to operate on
compact symbolic representations.

1 Introduction

The growing numbers of aging baby boomers and the
increasing healthcare cost obviates the need for automated
services that will increase the independence and autonomy
of elders living at home. Wireless sensor networks offer a
promising technology for realizing such services. On one
hand, small wearable devices can collect biometric infor-
mation, provide feedback and automatically update medical
records. On the other hand, other devices deployed inside
the living environment, can monitor behaviors to prevent
unsafe situations, post reminders, automate tasks and even
initiate conversation.

Our work focuses on the latter aiming to create models
and frameworks that would render wireless sensors capable
of understanding behaviors and other patterns and react to
them to provide services. In this paper, we demonstrate this
possibility through a case study that focuses on the recogni-
tion of a complex pattern by putting the sensory grammars
framework we proposed in [6] to work. Using data from
an ongoing pilot deployment in a house [9] we demonstrate
how the framework can be used to detect a complex cook-
ing pattern from a series of time-stamped location measure-
ments. Our experiments shows that a proper sensory gram-

mar definition can recognize multiple instances of cooking
performed by different people, using a single sensor node.
The scope of our presentation is focused on providing an in-
sight into the development of grammars for detecting com-
plex patterns. Our up to date sensor network deployment is
presented in [9] and the power aspects of our sensor nodes
are explored in [4].

The success of these experiments demonstrate two very
important implications for sensor networks. First, the sen-
sory grammars framework provides a powerful tool for rec-
ognizing complex patterns from simple, low-level sensor
measurements. Second, the process results in significant
data reduction that can lead to long-lived, battery-operated
deployments. As our experimental results demonstrate, a
large number of measurements obtained from a camera sen-
sor node are reduced to a one bit output at the sensor node
level: cooking or no cooking. This capability allows our
sensor network to operate on very low-bandwidth symbolic
information, avoiding expensive raw data exchanges.

The rest of the paper is organized as follows. Section
2 describes in detail how cooking activity can be identi-
fied from a sequence of simple localized measurements over
time. In Section 3 we evaluate the proposed grammar hier-
archy on a dataset acquired from a pilot network deploy-
ment in an actual house. Section 4 provides an overview of
the related work and Section 5 concludes the paper.

2 Recognizing Cooking Activity Using Sen-
sory Grammars

The main goal is to be able to robustly recognize if a
person is cooking or not by coarsely monitoring the person’s
activity inside a kitchen. However, recognizing individual
instances of the “cooking activity” is not enough:

1. “cooking activity” should be differentiated from any
other type of similar activities that might take place in
the kitchen. For instance, our system should not iden-
tify the process of cleaning up the kitchen after dinner
as a “cooking activity” even though the two activities



StoveSink

Refrigerator

Microwave

S

R

ST

Dining Table

DD

DD

E

Pantry
P

Trash

Exit

(a) (b) (c)

Figure 1. a) Kitchen layout, b) Ceiling camera view of the kitchen, c) iMote2 node with camera module.

are very similar.

2. “Cooking activity” recognition should be person as
well as dish invariant. In other words, we should cor-
rectly classify the monitored activity as “cooking ac-
tivity” independently of the person that is performing
it and independently of the dish that is prepared.

2.1 Initial Grammar Formulation

Our description of the “act of cooking” (we will refer
to this as “cooking activity” from now on) is based on the
kitchen floor plan shown in Figure 1(a). To simplify our
discussion we first abstract out the sensing modality by as-
suming that there is a sensor that can reliably detect if a
person is in areas D, R, P , S, and ST in Figure 1(a). These
areas denote where the subject will be located when using
the dining table, refrigerator, pantry, sink, and stove respec-
tively. The symbol E is also used to denote the exit area of
the kitchen. The whole kitchen was monitored by iMote2
sensor nodes from Intel equipped with a camera module we
designed for this application (Figure 1(c)). The module uses
an OV7649 camera module from Omnivision coupled to a
162 degree lens. This camera node acquires images at 8
frames per second, downsamples it to a 128 × 128 resolu-
tion and uses an image processing algorithm to extract the
location of a person inside the kitchen. All the processing
is done on the PXA271 processor on the node, and the node
transmits a binary decision if cooking is detected.

To specify a sensory grammar that recognizes cooking,
we must first decompose the cooking activity into a se-
quence of basic actions. On the one hand, these actions
should not be too abstract or too general because the dif-
ficulty of robustly detecting these actions increases signif-
icantly. On the other hand, these actions should be gen-
eral enough to capture multiple instances of the activity.
According to these considerations, we decompose the food
preparation process into 4 main components, each of which
requires a set of smaller actions:

1. Get ingredients from the refrigerator and/or the

pantry.

2. Prepare the dish by spending time at the sink.

3. Cook the food by spending time at the stove.

4. Serve dish at the dining table.

Using this decomposition of the food preparation pro-
cess, one could describe cooking as the ordered sequence
of actions 1, 2, 3 and 4. However, this simple description
of the cooking process is not adequate to capture all the
different instances of a real cooking activity. Humans tend
to forget and/or repeat actions without any obvious reason.
For instance, people often do not get all the ingredients at
once. Usually, they get a portion of them, they prepare it,
then they get more ingredients and so on. Also, even in a
specific activity, such as cooking, people tend to multi-task.
For instance, while the food is on the stove, appetizers can
be prepared at the sink or the initial preparation of the ta-
ble might take place (put the dishes at the table, get sodas
and drinks from the refrigerator, etc.). It becomes appar-
ent from these observations that there is a huge number of
different sequences of actions that describe a realistic cook-
ing activity. A robust grammar definition therefore, should
be able to recognize as many of these instances as possible
and at the same time differentiate them from other similar
activities that might take place in the monitored area.

2.2 Detailed Grammar Specification

Figure 2 shows the structure of a 2-Level grammar hier-
archy for recognizing cooking activity based on the formu-
lation presented in the previous section. At the lowest level,
a sensor correlates a subject’s location with areas and pro-
vides a string of symbols, where each symbol corresponds
to an area in the kitchen (e.g. R, S, etc.). This string of sym-
bols is then fed as input to the first level grammar which
translates it and summarizes it to a new string of higher
level semantics related to the detection of the cooking ac-
tivity (e.g AccessFood, CookFood, etc.). The second-
level grammar uses the high-level semantics identified at the



Area Sensor

Grammar Specification

Level 1

Grammar Specification

Level 2
Cooking

R P S D S ST S D E Sequence of area 
symbols

AccessFood ServeFood 
PrepFood CookFood 

ServeFood

...

Sequence of primitive 
semantics

Figure 2. 2-Level grammar hierarchy for the
detection of cooking activity.

immediate previous level to describe and identify a typical
cooking activity. In the same way the output of the second-
level grammar can be fed to any other higher level grammar
for the detection of even higher level semantics.

The detailed implementation of the proposed grammar
hierarchy is shown in Table 1. The grammar at Level 1 iden-
tifies the four cooking activity components (FoodAction)
by assuming that the underlying sensing modality will pro-
vide a sequence of activity regions; the phonemes of this
language. Lines 1 and 2 specify the non-terminal and termi-
nal symbols of this language. The terminal symbols are fed
as input to the grammar and represent the different activity
regions. Therefore, an input to the Level 1 grammar consists
of a string of the predefined activity regions R,P, S, ST,
and D. The non-terminal symbols include the four cook-
ing components and a set of standard symbols including the
Start and M symbols1. The non-terminal symbols in a
grammar represent the semantics to which the input of the
grammar is mapped. In this case, the output of the first-
level grammar is any equence of the following semantics:
AccesFood, PrepFood, CookFood, ServeFood.

The rest of the lines in Table 1 describe the pro-
duction rules of the first-level grammar. Lines 3 and
4 describe how to recursively generate an arbitrary se-
quence of FoodAction semantics. Line 5 describes
the FoodAction semantic as any of the AccessFood,
PrepFood, CookFood or ServeFood semantics. Each
one of these semantics is defined as a sequence of terminal
symbols in Lines 6-9. Line 6 defines the AccessFood se-
mantic as any trip between the refrigerator R and the pantry
P , that ends at the sink S or the stove ST . Lines 7 and 8

1The Start symbol is a standard symbol used in grammar descriptions
to represent the starting point of the grammar. We use the M symbol for
recursion.

define the PrepFood and CookFood semantics as being at
the sink S and the stove ST respectively. Line 9 describes
ServeFood as any sequence of trips between any of the
possible areas R, P , S, and ST and the dinning table D.
Note that the number of appearances of each of the terminal
symbols or their order of appearance is not explicitly de-
fined in Lines 6 and 9. However, the recursive nature of the
production rules allows the unified description of numerous
different expressions for the AccessFood and ServeFood
semantics. This shows the great generative power of gram-
mars where very simple rules similar to the one in the hu-
man language can be used to describe numerous instances
of the same complex activity.

The grammar at Level 2 takes as input the activity com-
ponents identified at Level 1 to describe a typical cooking
activity. As it can be seen by Line 2, the vocabulary of the
second level grammar is composed by the output semantics
of the first level grammar. The output of this level is a se-
quence of Cooking semantics. Lines 3 and 4 use recursion
to allow multiple appearances of the cooking activity. The
Cooking semantic is described in Line 5 as any sequence
of the CookFood, Process and ServeFood semantics that
starts with the Process or Prepare semantics, ends with
the Process semantic and contains at least one CookFood
semantic. Line 6 describes the Prepare semantic as any
sequence of the terminal symbols excluding the CookFood
symbol. Line 7 defines the Process semantic as any se-
quence of the Prepare and ServeFood semantics that con-
tains at least once the ServeFood semantic. Note that be-
cause of the recursive nature of their definition, each of the
production rules in Lines 5 and 6 can correspond to a huge
number of different instances of the cooking activity. How-
ever, this large number of different instances are described
in 7 lines of production rules for the second level grammar
and 9 lines of production rules for the first level grammar.

Since our grammar is probabilistic, each production rule
is associated with a probability denoted as a superscript in-
side parentheses at the end of each production rule. Note
that the sum of the production probabilities for each non-
terminal sums up to one. In the grammars shown in Table
1, we assume that there is a uniform probability distribu-
tion for the production rules. However, in some particular
scenarios these probabilities could be learned from ground
truth data. This could be done by applying this grammar on
real data and keeping track of how often each production
rule is used. The more often a production rule is used the
higher its probability.

The grammar parser makes use of these probabilities, to
calculate the most probable string of non-terminal symbols
for a given input string of terminal symbols. Level 1 of the
grammar translates a sequence of object areas (such as R,
D etc.) into a new sequence of basic cooking components
(FoodAction) in a probabilistic way. The probabilistic na-



Table 1. Cooking Grammar Hierarchy

Level 1 Grammar
Input: A sequence of any of the terminal symbols:
{R,P, S, ST,D}
Output: A sequence of any of the following non-terminal
symbols: {AccessFood, PrepFood, CookFood, ServeFood}

1. VN = {Start,M,Action, FoodAction, CookFood, ServeFood, AccessFood, PrepFood,
2. VT = {R,P, S, ST,D}
3. Start → M (1.0)

4. M → M FoodAction(0.5)|FoodAction(0.5)

5. FoodAction → AccessFood(0.25)|PrepFood(0.25)|CookFood(0.25)|ServeFood(0.25)

6. AccessFood → R AccessFood(0.16)|P AccessFood(0.16)|R S(0.16)|P S(0.16)|R ST (0.16)|P ST (0.16)

7. PrepFood → S PrepFood(0.5)|S(0.5)

8. CookFood → ST CookFood(0.5)|ST (0.5)

9. ServeFood → ServeFood S D(0.1)|ServeFood R D(0.1)|ServeFood ST D(0.1)|ServeFood P D(0.1)|
ServeFood D(0.1)|S D(0.1)|R D(0.1)|ST D(0.1)|P D(0.1)|D(0.1)

Level 2 Grammar
Input: A sequence of any of the terminal symbols:
{AccessFood, PrepFood, CookFood, ServeFood}
Output: A sequence of any of the following non-terminal
symbols: {Cooking}

1. VN = {Start,M,Cooking, Process, Prepare}
2. VT = {AccessFood, PrepFood, CookFood, ServeFood}
3. Start → M (1.0)

4. M → M Cooking(0.5)|Cooking(0.5)

5. Cooking → ProcessCooking(0.2)|CookFood Cooking(0.2)|PrepareCooking(0.2)|
ProcessCookFood Process(0.2)|PrepareCookFood Process(0.2)

6. Prepare → AccessFood Prepare(0.25)|PrepFood Prepare(0.25)|AccessFood(0.25)|PrepFood(0.25)

7. Process → ServeFood Process(0.25)|PrepareProcess(0.25)|ServeFood Prepare(0.25)|ServeFood(0.25)

ture of this translation implies that the same input sequence
might correspond to different sequences of the basic cook-
ing components according to the grammar definition. For
each of these possible different output sequences a probabil-
ity is computed based on the individual probabilities of the
production rules used to derive each output sequence. The
output sequence with the highest probability is chosen as the
final output. This output is then fed into a Level 2 grammar
which in a similar way translates a sequence of basic cook-
ing actions to a sequence of cooking actions. For instance,
Figure 3 shows the most probable parse trees for both levels
and for a given input sequence of object areas. As it can be
easily verified, each edge in the tree corresponds to a pro-
duction rule of the corresponding grammar. The probability
assigned to the parse tree is computed by multiplying the
probabilities at each branch from the root to the leaves and

then summing the probabilities of all the branches in the
tree. For instance, in Figure 3(a) there are 5 branches with
probabilities (p1 corresponds to the leftmost branch and p5

to the rightmost branch):

p1 = (0.5)4 × 0.5× 0.5× 0.25× (0.166)2 = 0.0001075
p2 = (0.5)4 × 0.5× 0.25× 0.1 = 0.000781
p3 = (0.5)3 × 0.5× 0.25× 0.5 = 0.0078125
p4 = (0.5)2 × 0.5× 0.25× 0.5 = 0.015625
p5 = (0.5)× 0.5× 0.25× 0.1 = 0.00625

The probability of the tree is equal to
∑5

i=1 pi = 0.0305.
In exactly the same way, a probability for the tree shown in
Figure 3(b) can be computed using again the probabilities
assigned to the production rules shown in Table 1.
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Figure 3. Example parse trees for the 2-Level cooking grammar hierarchy.

3 Evaluation

Our scheme was evaluated on data acquired in a series
of experiments in the kitchen deployment described earlier.
In every experiment the person in the kitchen was prepar-
ing either breakfast or dinner. The data collection started
when the person was entering the kitchen or while the per-
son was already in the kitchen. It was stopped when the
person started eating breakfast or dinner at the dining ta-
ble. The person in each experiment was not aware of what
he would have to cook until a couple of minutes before the
recording of the data. This prevented the person from us-
ing pre-meditated moves. The person cooking was also un-
aware of the actual grammar hierarchy definition. In to-
tal, 10 cooking traces were collected lasting from approxi-
mately 10 minutes (breakfast) to 50 minutes (dinner) each.

In order to challenge the capabilities of the proposed
scheme, we also recorded a set of activities other than cook-
ing in the same kitchen area. In total, 5 different traces were
recorded on different days. These activities included clean-
ing the kitchen after having dinner, cleaning the floor of the
kitchen and sorting the groceries after returning from the
super-market. Especially when cleaning up the kitchen af-
ter having dinner, the areas visited are almost the same as
when cooking. This can be seen in Figure 4(a) and Figure
4(b). The recorded traces of image locations are very simi-
lar. However, the grammar hierarchy should only recognize
the cooking activity trace.

For each recorded activity trace the ground truth area in-
formation activity was also recorded. This was done man-
ually by a person that examined a recorded video for each
recorded trace. The ground truth area information was used
to investigate the false negatives and false positives of the
area sensor.

Table 2 shows the recognition results of the proposed
grammar hierarchy for all the recorded activities and for
both the ground truth data and the actual data provided
by the area sensor. In both cases, all the cooking activi-
ties are correctly classified. What is even more interesting
is the fact that the proposed scheme can differentiate be-
tween very similar activities such as cooking and cleaning.
This demonstrates that the grammar definition is general
enough to capture various instances of cooking activity, but
at the same time it is specific enough to robustly differenti-
ate cooking from other similar activities. This is due to the
fact that the grammar hierarchy definition imposes specific
restrictions into the sequence of measured locations over
time. For instance, when people are cleaning, they either
do not visit the stove area or some other areas (i.e. clean-
ing the floor or sorting the groceries) or they do not move
to the dining table after cleaning everything. This type of
restrictions in the description of the cooking activity allow
the system to differentiate between cooking and cleaning.

However, as for example shown in Table 2, the proposed
system fails to correctly classify the cleaning activity shown
in Figure 4(b) when the ground truth data is used. This is
due to the successful calibration of the area sensor. The ta-
ble area was defined by using real image locations acquired
when a person was sitting at the table. This data gave us a
very precise definition of the table area. While cleaning the
table (i.e. picking up the plates etc.), people do not sit at
the dining table and therefore the area sensor would rarely
detect the dining table area in such a case. However, this
table area information is recorded in the ground truth data
resulting into an incorrect classification result.

The experimental data provides insight on how to bet-
ter calibrate the area sensor. Table 3 shows the number
of area symbols generated by the area sensor versus the
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Figure 4. Area definitions and example data sets.

Table 2. Recognition performance results
Kitchen Number of Correctly Classified
Activity Traces (Ground Truth) (Filtered)
Cooking 10 10 10
Cleaning 5 4 5

Other 1 1 1

ground truth number of area symbols for three of the col-
lected traces. It is clear that the area sensor gives both false
positives and false negatives. The false positives are caused
by the fact that the area of the kitchen used in our experi-
ments was small. As a result, the areas of the refrigerator
and the pantry (Figure 1) are very close and when a per-
son tries to use the pantry it is possible that the refrigerator
area will also be recognized. The false negatives are mainly
caused by small movements of the person in the kitchen
that cannot be robustly captured at the 128 × 128 resolu-
tion. For instance, in many cases the person was able to
reach the sink by simply stretching but without moving out
of the stove area. In this case, the sink would appear in the
ground truth data but not in the output of the area sensor.

In order to reduce the size of the input to the grammar
hierarchy (and thus its execution time) a 3-stage sensor cal-
ibration mechanism was implemented. The first stage con-
verts the time series of image locations to a time series of
visited areas. The Undefined area symbol can be pro-
duced when the monitored person is moving in any place in
the kitchen that is not one of the predefined areas. The sec-
ond filtering stage, removes all the Undefined area sym-
bols because they are not used by our grammar and they
increase the size of the input to the grammar hierarchy. Af-
ter removing the Undefined area symbols, consecutive ap-
pearances of the same area symbol might appear. The third
filtering stage merges all these consecutive appearances to
a single area symbol.

The overall average information reduction from this 3-
stage calibration mechanism is approximately 99%. This is
the percentage of reduction in the number of symbols that

Table 3. The effect of imperfect sensing
Kitchen Number of Areas Number of Areas
Activity (Ground Truth) (After Filtering)
Dinner 116 109

Breakfast 15 19
Cleaning 1 12 9

are given as input to the grammar hierarchy with respect to
the number of image locations initially recorded. The av-
erage percentages of information reduction for each one of
the three stages of filtering are: 85% (from translating the
raw image locations to areas) , 50% (from simply removing
all the Undefined areas) and 90% (from merging consec-
utive area symbols) respectively. Due to the sensor calibra-
tion the number of symbols eventually fed as input to the
grammar hierarchy (approximately 10 to 100) are orders of
magnitude less than the initial number of image centroids
recorded (2583 to 6648), as shown in Table 4. These num-
bers demonstrate the feasibility of such a system running in
real time on a sensor network. An input of 10 to 20 symbols
is relatively small and can be parsed in a very short period
of time even on an a sensor node as will be made clear in
the next section. In addition, the fact that activities lasting
as much as 50 minutes can be reduced down to a sequence
of only 100 symbols shows that modeling human activity as
a sequence of actions could meet the real time requirements
and limitations of sensor networks. To test the feasibility of
running parsing on the sensor node we have implemented
cooking recognition on the iMote2 processor. The typical
execution times as a function of the input symbols for both
levels vary from a couple of hundred of microseconds (10
input symbols) up to a few milliseconds (100 input sym-
bols).

4 Related Work

Researchers at Intel Research and MIT have studied hu-
man activity recognition in the context of assisted living ap-



Table 4. The effect of raw data filtering.
Kitchen Number of Number of Areas After Filtering
Activity Centroids Stage 1 Stage 2 Stage 3
Dinner 6648 1456 728 109

Breakfast 2924 446 223 12
Cleaning 2583 421 211 9

plications using RFID tags [1, 8, 7, 5]. This approach re-
quires extensive tagging of objects and people with RFID
tags. While our work is absolutely compatible and it could
be transparently used with these types of network setups, it
makes a significant contribution: it demonstrates that the hi-
erarchical organization of probabilistic grammars provides
enough infrerence power for recognizing human activity
patterns from low level sensor measurements.

Sensor networks for abnormal activity detection have
also been proposed [3, 2] . In this approach, statistical anal-
ysis of long-term real data is used to define what a “nor-
mal” activity is. Every activity that deviates from the “nor-
mal” activity profile is considered to be “abnormal”. While
this method can be useful, it does not provide enough infor-
mation about the exact service that has to be triggered by
the system. Different types of abnormal activities require
different types of services to be triggered. Furthermore, in
many cases it is very useful to be aware of the exact activi-
ties of a person even though these activities are not consid-
ered to be “abnormal”. For instance, a sensor network that
can understand human behaviors could be used to assist el-
ders living alone.

The approach demonstrated in this paper is also com-
plementary with the Semantic Streams work presented in
[10]. Grammar hierarchies, like the one described in this
paper, provide a structured bottom-up processing of the sen-
sor data for generating higher level semantics in a way that
is similar to streams. These semantics can be easily be-
come the basic processing elemets for answering higher
level queries through the top-down user programming in-
terface proposed in [10].

5 Conclusions and Future Work

In this paper we have used the cooking grammar as
an example to demonstrate how sensory grammars can be
used to detect complex patterns from simple measurements.
Our experiences from this experiment indicate that there is
a learning curve associated with writing good grammars.
Notheless, the sensory grammars framework shifts the ef-
fort in programming the sensor network from low-level em-
bedded systems programming to high level grammar script-
ing, thus allowing domain experts to focus on sophisticated
pattern searching using distributed sensor networks. Be-
yond the assisted living application presented here, our case
study illustrates how one could reason with locations and a

map, something that could be applied to a much larger scale
with sensor networks. The same framework is also directly
applicable to other patterns in many domains. As part of
our future work, we plan to refine our middleware archi-
tecture for sensory grammars and apply it to different do-
mains. Our home deployment of a 6-node sensor network is
currently in its second month of deployment and a detailed
library of behaviors is currently being developed using the
collected dataset. Finally, in addition to procesing spacial
information as illustrated in this paper, our middleware has
already been expanded to support temporal reasoning. In
the near future we plan to conduct analysis on longer term
data traces.

Acknowledgments

This work was partially funded by the National Science
Foundation under awards #0448082 and #0529186. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foun-
dation.

References

[1] M. P. et. al. Inferring activities from interactions with ob-
jects. IEEE Pervasive Computing, 03(4):50–57, 2004.

[2] S. R. et. al. Abnormal activity detection in video sequences
using learnt probability densities. In TENCON, October
2003.

[3] W. P. et. al. Unsupervised activity recognition using auto-
matically mined common sense. In Proceedings of AAAI,
July 2005.

[4] D. Jung, T. Teixeira, and A. Savvides. Model based design
exploration of wireless sensor node lifetimes. In Proceed-
ings of EWSN, April 2007.

[5] L. Liao, D. Fox, and H. Kautz. Location-based activ-
ity recognition using relational markov models. In Nine-
teenth International Joint Conference on Artificial Intelli-
gence, 2005.

[6] D. Lymberopoulos, A. Ogale, A. Savvides, and Y. Aloi-
monos. A sensory grammar for inferring behaviors in sensor
networks. In Proceedings of IPSN, April 2006.

[7] D. Patterson and M. P. D. Fox, H. Kautz. Fine-grained
activity recognition by aggregating abstract object usage.
In IEEE International Symposium on Wearable Computers,
October 2005.

[8] E. M. Tapia, S. S. Intille, and K. Larson. Activity recognition
in the home setting using simple and ubiquitous sensors. In
PERVASIVE 2004, 2004.

[9] T. Teixeira, D. Lymberopoulos, and A. Savvides. Experi-
ences from a home sensor network deployment for assisted
living. In to appear in WiDeploy 2007, April 2007.

[10] K. Whitehouse, J. Liu, and F. Zhao. Semantic streams: A
framework for the composable semantic interpretation of
sensor data. In Proceedings of EWSN, February 2006.


