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ABSTRACT

The in-house monitoring of elders using intelligent sensors is
a very desirable service that has the potential of increasing
autonomy and independence while minimizing the risks of
living alone. Because of this promise, the efforts of building
such systems have been spanning for decades, but there is
still a lot of room for improvement. Driven by the recent
technology advances in many of the required components,
in this paper we present a scalable framework for detailed
behavior interpretation of elders. We report on our early
deployment experiences and present our current progress in
three main components: sensors, middleware and behavior
interpretation mechanisms that aim to make effective mon-
itoring and assistive services a reality.
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1. INTRODUCTION

Monitoring people activities and providing automated ser-
vices that improve safety and quality of life is a very attrac-
tive proposition for elders living alone. Although the prob-
lem was considered for many years, it has recently begun
to become more relevant for two main reasons. First, many
studies together with the rising costs of healthcare point out
that the caring of elders that live alone at home is about to
become a challenge in the next few years [4, 11]. The second,
and more positive development is that communication, sens-
ing and processing technologies are rapidly maturing to the
point that make automated services for elders living alone
possible both in terms of cost and technology.

From a technology perspective, the majority of compo-
nents required to build such systems are becoming read-
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ily available. Many systems under development both in
academia [5, 10, 12, 16] and industry [1], as well as some
commercial systems [3] are already capable to provide es-
sential monitoring services (for a survey of current state-of-
the-art see [2, 4]). What is mostly missing is experience and
systematic knowledge to intelligently assemble the compo-
nents in to robust architectures and practical, deployable
systems. In addition, most of these systems focus on col-
lecting and presenting simple statistics, often using intrusive
sensors (e.g., wearable devices), requiring, thus, the involve-
ment of healthcare providers and stakeholders in the system
loop.

The BehaviorScope project at Yale [15] is investigating
these challenges by trying to build a functional system that
can autonomously understand behaviors with enough de-
tail to provide meaningful services. The goal of the project
is to design an extensible architecture that can use a wide
variety of sensors to interpret human activity, dynamically
generate activity models and use them to generate alarms,
reports, triggers and to answer queries. In this paper we
provide an overview of the architecture of the system under
development, and report on the main components that our
research is trying to address. Section 2 provides an overview
of our system requirements, section 3 outlines our system ar-
chitecture and section 4 explores various methods we have
considered for interpreting the data.

2. OVERVIEW

The provision of services requires a set of sensors to be
deployed inside a home to observe the inhabitants, inter-
pret the observations and provide meaningful responses. De-
pending on their condition, one can anticipate that the home
inhabitants would be willing to subject themselves to a cer-
tain level of observation (i.e., give up some of their privacy)
in exchange for services. The goal of our architecture is to
provide a versatile system that can accommodate this at dif-
ferent levels, from very simple to very detailed observation,
according to individual needs. The initial form of the system
is intended for elders that live alone, and are fairly indepen-
dent. In this case, the role of the system would be to elimi-
nate certain risk factors that could otherwise be avoided by
resorting to institutionalization. In its simplest form, such
a system would offer a wide variety of services:

e (Queries - the system should be able to answer queries
such as: where is the person, is that person getting
enough sleep, is the person out of the house beyond
the expected time?

e Alarms and triggers - notify stakeholder when the per-
son returns/leaves the house, notify when the person
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Figure 1: General overview of the system architecture. By defining a modular architecture, and multiple levels of abstraction,

we can achieve scalability and robustness.

wakes up/goes to bed.

e Detect anomalies - By observing and learning routines
(e.g., daily, weekly, monthly), the system can provide
notifications when an unusual deviation from the rou-
tine happens.

e Recognize specific behaviors - By allowing the program-
ming of specific behavior recognition libraries into the
system, one can tailor the system to provide customized
observations and actions for each house. This for ex-
ample would help tailor the same system to people suf-
fering with cognitive decline and people who are frail
and run the risk of falling or getting stuck somewhere
(e.g., bed, toilet).

e Actuate - Take action when certain events (or combi-
nations of events) are detected.

The users of the system should be able to configure the
above properties to adapt it to their individual needs by pro-
gramming custom triggers, defining custom queries for fu-
ture use and specifying what actions should be taken when
a specific behavior is detected. Moreover, for detecting rou-
tine behaviors and timing parameters, the system should be
able to use a generic specification as a starting point and
automatically “cast” itself to the home and the activity pat-
terns of individuals when it is actually deployed.

The above requirements create a new set of challenges in-
volving sensing and data interpretation, and call for a mid-
dleware architecture that can support a heterogeneous set
of devices and their tailored configuration for each home.
Furthermore, for cost effectiveness and ease of installation,
a practical system should provide the aforementioned ser-
vices without requiring the exhaustive tagging of every item
in the home with sensors. To make this possible, the Behav-
iorScope project seeks to build a rigorous understanding of
what today’s off-the-shelf sensors can do, what types of new
sensors are required and how a heterogeneous set of such
sensors can co-exist in the same framework to collect and
interpret data.

An outline of our system-wide architecture is shown in
Figure 1. A set of wireless sensors is placed at key locations
to collect sufficient information for recognizing a person’s
activity profile around the house. The data collected by the
sensors is forwarded to an intelligent gateway installed inside
the house that processes and interprets the data by commu-
nicating with a central server. Caregivers and stakeholders
can interact with the system via two main interfaces, a mo-
bile phone interface and a web interface. The mobile phone
is the main interface for communicating, daily summaries,
alarms, triggers and queries. The web interface supports a
more elaborate setup that allows the end-user to customize
the behavior of the system to each home.

Figure 2: Multiple people tracking.

3. SYSTEM ARCHITECTURE

A key premise of the BehaviorScope infrastructure is the
ability to jointly consider information from multiple sensor
types to infer behavior from low-level data. Most of the sen-
sors are off-the-shelf Passive Infrared (PIR), and door/window
sensors, assisted by more powerful, motion discriminative
sensors derived from cameras. The latter form of sensors
is aiming to define a new sensing modality in which people
locations and movements in the house can be sensed but no
images can be produced. The home floor plan is divided into
two types of areas, common and private. Counting sensors
are only placed in the common areas of the home especially
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Figure 3: Room transitions and detection of sleeping activity and bathroom usage (using rule based triggers) of the monitored

person of Deployment A (person living alone) for a period of one week.

near the exits. PIR sensors and door/windows sensors can
be placed anywhere in the house according to the specific
monitoring needs. Although it would be possible to exhaus-
tively cover the house with a large number of sensors, in
this paper we consider the possibility of achieving similar or
better activity inference with a smaller kit of sensors.

The main components of the system include an intelli-
gent gateway (see Figure 4) able to collect data from a large
number of sensors, process them and transmit them back to
a central server. In the central server data can be stored,
preprocessed in a number of different formats depending on
the types of sensors and the information that needs to be
extracted before it is passed to the application modules. In
cases of increased privacy concerns, data processing can be
done locally inside the gateway, and the results can be di-
rectly transmitted to the authorized end-users, with the cen-
tral server responsible for only the authentication of the end-
users, the configuration of the deployment and the system
maintenance.

Thanks to modular design, the addition of new applica-
tions or sensors to the system does not interfere with its
normal operation. In particular, to add a new type of sen-
sors, cameras for example, the developers have to provide
a “driver application” for the gateway, that will be able to
collect data from the particular type of sensor network, and
dump it into the gateway’s database. The system will auto-
matically take care of the data synchronization process with
the central server. In addition, the developer can add a
number of preprocessing modules, depending on the type of
“fundamental” information that needs to be extracted from
the data. For example, in the case of a camera node we can
define areas of interest and generate an event, whenever mo-
tion is detected inside that given area. The outputs of the
preprocessing modules are added back to the database, and
can be used by applications running either on the central
server or locally by the end-users. Similarly, in order to add
a new application on the central server, all we need to do is
add a preprocessing module, that given possibly some con-
figuration parameters from the users, will convert raw (or

previously preprocessed) data into the proper format and it

will then pass them to the application module.
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Figure 4: Home sensor network kit.

3.1 Sensors

The PIR and door sensors used in our system are off-the-
shelf sensors readily available form different vendors. Al-
though PIR sensors detect motion, they don’t necessarily
detect occupancy of an area inside the house. For instance
if two people enter a room, and one person leaves, mea-
surements from PIR sensors alone cannot easily determine
that a person is still in the room if the person does not
move. Moreover, most commercial sensors have very prim-
itive MAC layers, primarily geared towards security alarm
trigger applications. This does not always favor assisted liv-
ing setups where readings from multiple sensors, and their
relative timing have a meaning. A straightforward solution
is to attach PIR sensors to off-the-shelf sensor nodes, but



that would cancel their main advantages of low cost and
increased battery lifetimes.

Because of these limitations of PIR sensors, and the need
to count and track multiple people we are currently devel-
oping a new custom sensing modality that can localize and
track people inside the house without requiring them to wear
a tracking device. Although the sensor is derived from cam-
eras, it directly aims at the development of a new camera
chip that can localize, count and track people without pro-
viding any image information to the rest of the system. The
typical image sensor outputs a serialized array of pixel in-
tensity values. This array contains raw data that must be
heavily processed before any desirable information can be
gathered. Our platform, on the other hand, is built with
biologically-inspired Address-Event (AE) imagers in mind
[13]. Instead of outputting arrays of pixel intensity, these
imagers asynchronously output an address (in pixel coor-
dinates) every time an event is detected. Events can be
any measurable phenomenon. In the case of the imagers
we use, an event is triggered every time a pixel senses mo-
tion (an above-threshold change in intensity). The power of
address-event lies in three separate properties: Processing
occurs at the pixel level, freeing the controlling CPU from
complex imaging tasks; AE sensors do not discretize time
into “frames”, which allows for precise measurements and
provides privacy; AE sensors are typically ultra-low-power.

In our current platform, we emulate the address-event im-
ager in software. The emulated parameters are used to guide
our custom hardware imager design. Since our algorithms
are written for address-event input, once a hardware AE
design is fabricated it can directly substitute for the emu-
lated version. The sensor nodes in our deployment use Intel
iMote2 sensor nodes coupled with a custom camera board.
The purpose of the nodes is to find and track the people in
their field-of-view, communicating the detected coordinates
back to their base.

The software on the sensor nodes detects humans based
on size and motion by constructing a motion histogram [14].
The histogram utilizes person-sized bins to compute a den-
sity estimation of possible human locations. This is done by
dividing the image into partially-overlapping person-sized
areas, and counting the number of above-threshold motion
pixels that lie within each area. These counts are organized
as bins in a two-dimensional histogram, and the local max-
ima are computed to locate the histogram peaks. Each peak
indicates the likely location of a moving person, as seen in
Figure 2.

3.2 Intelligent Gateway

Our gateway architecture consists of four main categories
of software modules, shown in Figure 4. The first type of
modules are sensor specific and consist of the drivers for
receiving the sensed data from the network, removing or
correcting erroneous measurements, detecting malfunctions
of the sensors and, generally, managing the correct opera-
tion of the deployment. The collected data is stored in a
local database, which is incrementally (i.e., only new data)
transmitted to the central server, by a synchronization mod-
ule. Other modules in this category include modules for re-
ceiving software updates, modules for checking the correct
functionality of the gateway, modules performing authen-
tication, modules allowing the remote configuration of the
gateway parameters and, generally, any module that isn’t
sensor specific or concerns data processing. When it comes

to data processing, there are two categories of software mod-
ules. The first category involves software modules that col-
lect statistics, learn from the collected data and possibly
respond on significant deviations, whereas the second cate-
gory includes modules that try to detect certain behaviors
and patterns inside the network and possibly take certain
actions as a response.

3.3 Central Server

Besides the system management modules (e.g., gateway
software updating module) and the module that updates the
database with the incoming data from the deployments, the
central server contains two more main categories of software.
The first one has to do with preprocessing and conditioning
of the incoming data, and depends on the type of the sensors
and the requirements of the end users. In the case of complex
sensors, such as cameras, the data collected from every type
of sensor can be processed in order to extract some features
that can directly be used by the users, or be given as input
to one or more applications.

The central server stores the data in a separate database
for each deployment and incrementally preprocesses the data
according to sensor types and the required information that
needs to be extracted (i.e., according to the data processing
module that we wish to use). The new data is then passed
to a sensor specific module, which using user-specified and
statistically learned configuration parameters create user-
specific views for each user and each possible data process-
ing module that is available for the given deployment and
sensor. These views are subsequently accessed by the appli-
cation modules located inside the server, which will generate
a number of results, or by custom applications designed by
the users (and located outside of the server).

3.4 End-User Interfaces

The system provides two main interfaces for configura-
tion, management and access to the collected information.
A “power” user can manage the accessibility to the data of
a deployment by adding or removing users and specifying
their access rights to the various available forms of infor-
mation (e.g., a user might have access to notifications for a
particular event). Moreover, this user has access to one or
more of the available application modules designed by the
developers of the system. These modules, after an initial
configuration from the user (e.g., assignment of a location
name to each sensor, definition of areas of interest) can pro-
vide a large amount of information to the user.

The user by default has access to general statistical in-
formation (e.g., average night sleep time, average number of
visits to the restroom) built-in to the system or can even de-
fine her own queries. Similarly, she can enable notifications
for significant deviations (e.g., unusually large time period
spent in the restroom, unusually high number of restroom
visits) or predefined “behaviors” (e.g., preparing for night
sleep). In addition, using a simple interface she can define
her own behaviors.

A cell phone interface (based on SMS) provides a subset
of this functionality and is mainly used for communicating
alerts, high-level statistics and enabling the user to perform
simple queries.

4. DATA PROCESSING & INTERPRETATION

Depending on the granularity of the data and the appli-
cation of interest to the end-user, the system can provide
a wide range of statistical information. In the following
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Figure 5: Occupancy of the living room inferred from motion information for (a) Deployment A (single person living alone)

and (b) Deployment B (multiple people).

subsections, we will use data collected from online deploy-
ments in two different homes, consisting mainly from PIR
and door/windows sensors. Deployment A has been contin-
uously monitoring an elder person living alone in the USA
for more than 7 months, whereas Deployment B monitors
an elder couple and their adult son in Cyprus for the past
4 months. In both deployments camera sensors are located
near the exits of the house and are used only for counting
the number of persons present in it.

The following subsections first discuss the statistics we can
extract from motion-only information generated from PIR
sensors in the BehaviorScope deployments. The discussion
is separated into two cases, the case where we have a single
person living in the house and the case where we have more
than one persons living in the house. Afterwards, we are
going to shortly discuss a method for detecting significant
deviations from the “normal” living pattern of a person or
a house, and in the following two sections we are going to
discuss how our system can automatically generate a high
level model of the daily living pattern of a person, as well
as how it can be programmed to detect specific behaviors.

4.1 Motion Statistics

The lowest level of information we can extract from a mo-
tion sensor is a time-stamped notification of when motion
was detected. Although PIR motion measurements are not
sufficient to determine occupancy (i.e., wether a person is in
a certain room or not), they can provide information about
people movement inside the house. This information pro-
vides an indication of the room occupancy patterns inside
the house.

4.1.1 Single Person Case

In the case where only a single person is in the house, time-
stamped motion sensor measurements capture the room-to-
room transitions of the person. This information on its own
can reveal the activity profile of a person and the level of
periodicity of a person’s daily routine. Figure 3 shows the
room transition profile of the elder in Deployment A over the
period of one week (September 19-25, 2007). The sequences
reveal that the person has a very consistent daily pattern,
and with a few basic rules and statistics we can extract basic
activities and sleep patterns [6].

Moreover, using simple rules and collected statistics (e.g.,
average sleep duration) we can detect very simple activities,
as for example night sleep. Night sleep in the deployment of
Figure 3 can be inferred when we detect motion in the third
bedroom of the house (BR3), after 11pm, and followed by

lack of motion for at least approximately 30 minutes.

Assuming that a person is not moving between two con-
secutive motion notifications, we can, additionally, provide
occupancy statistics for a given location. Figure 5.(a) shows
the occupancy of the living room of Deployment A (person
living alone) for the duration of a week (August 9-15, 2007).
From this figure it is easy to observe that the person spends
significant amounts of time in the living room, and usually
around the same time of the day. In particular, we can see
that the person will always spend time in the living room
(watching TV), late in the evening (before going to bed),
as well as during most of the morning and noon, until she
goes to work around 3:30pm. It is easy to observe, that
during the weekend this pattern changes significantly, since
for example the person will spend more time in the living
room and will, also, spend time in the living room between
3:30-6pm, something which can’t happen during a normal
weekday when the person is at work.

4.1.2  Multiple People Case

In the case of multiple people living in a house, motion
sensor data loses its sequence properties and cannot reveal
the daily patterns of one person in specific. Since, the se-
quence property is essential for inferring occupancy informa-
tion, we can see in Figure 5.(b) that there is no clear occu-
pancy pattern for the living room of Deployment B (multiple
people in the house). The data however still provides some
useful information on the usage profile of each room in the
house.

To provide meaningful statistics comparing the utilization
of the rooms of the house, we first need to define a common
representation of the “quantity of motion” for a given area
and time window, that we are interested. Hence, we define
a new metric for the mobility of a person at a given location
and time window, called relative mobility level. The relative
mobility level is essentially the normalized amount of motion
in a specific area and time window with respect to a given
time period and a given area of interest.

More formally, given the minimum time duration t,,in
(e.g., 15 minutes) for which we are interested we can de-
fine a set of time bins tp, over a given time period T (e.g.,
a day) as tp, = [ﬁ, m) Similarly, for a given
set of sensors S we can define a set of space bins s; as the
union of space covered by one or more members of S (e.g.,
the area covered by sensors with ids 5 and 11, which is the
living room area for Deployment A). If we take all the pairs
of space and time bins, we define as relative mobility level of
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Figure 6: Relative mobility levels for the entire house and (a) Deployment A for time bins equal to 15 minutes, (b)
Deployment A for time bins equal to 1 hour, (¢) Deployment B for time bins equal to 1 hour.

each such pair the total number of motion notifications that
we received in the particular space bin and the particular
time bin over the total number of motion notifications we
received for all the period T and all the sensors in S.

For example, Figure 6.(a) shows the average relative mo-
bility level of an elder person living alone in 15-minute in-
tervals. In this case S is defined to be the entire house (i.e.,
all sensors) and the time bins are selected to be 15-minute
durations during the course of the day. Consequently, every
bar in the graph indicates the average “quantity of motion”
at the given 15-minute window during the day for the entire
house. Apparently, depending on the information that the
end-users or specific applications require, we can have differ-
ent types of resolution. For instance, in Figure 6(b) shows
the average relative mobility level for the same deployment,
but with hour-long time bins.

From Figures 6.(a) and 6.(b) it is easy to extract useful
information for the daily living pattern of the monitored
person. From the plots it is easy to infer when the person is
sleeping or is out of the house by combining measurements
with other context information such as the time of the day
or the last known location of the person inside the house.
In deployment A, it is easy to observe that the person is
going to bed some time between 11:30pm and 12:30am, and
wakes up some time between 8:30am and 9:30am, since the
detected “amount” of motion suddenly increases. Moreover,
it is easy to observe that the person consistently goes out
of the house some time after 3:30pm and returns some time
after 5:00pm and before 6:00pm. Spikes that appear while
the person is absent or during the night (when the person
is sleeping), are mainly attributed to sensing errors. For
instance, you can see a spike at around 5:30am in the morn-
ing, which is caused by a misconfigured motion sensor that
triggers whenever it detects light changes (in the particular
case, sun rising). The statistical information provided by
the relative mobility level can be used in order to provide
time windows, where interesting events occur or specify the
required timeouts for detecting certain events, based on user-
defined rules. Apparently, selecting different time or space
resolutions can be useful for the detection of different types
of events.

Figure 6.(c) shows a similar plot for the house of Deploy-
ment B, where the motion pattern is significantly different
from that of Deployment A, and doesn’t provide as much
information as that of Figure 6.(b). Figure 7 plots the aver-
age relative mobility level of the rooms of the house of De-

ployment B, which is an indication of their utilization. We
separate weekdays from weekends, in order to make some
interesting observations obvious. In particular we can see
that for most of the basic rooms the motion pattern re-
mains approximately the same. However, we can see that
the utilization of Bedroom 1 (“BD1” in the figure) decreases
during the weekend. This happens due to the fact that Bed-
room 1 is used by a young adult, who on a Saturday night
will spend most of his night out of the house. On the con-
trary, the utilization of Bedroom 2 (“BD2”), which is used
by two elders (who don’t work) remains the same. Similarly,
we can see that during the weekend the family spends sig-
nificantly more time hanging out in the Sun Room (“SR”) of
the house and, also, more time in the Dining Room (“DR”)
having lunch and dinner.

Figure 7: Average daily relative mobility level for every
room of Deployment B. Weekdays are separated from week-
end days in order to demonstrate that they follow different
occupancy patterns.

4.2 Detecting Deviations

To detect deviations in the living pattern of a person or
the house, we have first to model the motion activity pat-
tern in a way that will enable us to find regularities, thus
defining a notion of “normal”. Apparently, every person or
house (in the case of multiple people) has its own pattern,
which changes over time. and is also dependent on many
macroscopic parameters, as for example the time of the year
or, in the case of the house, the current set of people living



inside it. Of course, we can try to detect deviations in many
different time windows, but for the following discussion we
will limit ourselves to detecting “deviating days”. Besides a
daily pattern, a person or a house can have patterns in many
different time resolutions both larger and smaller. For ex-
ample, most people have a certain wake-up routine and a
house has a yearly usage pattern, that is, the utilization of
the rooms changes depending on the season of the year. This
becomes apparent even by simple observation of Figures 5,
and 7, where it can be seen that the normal pattern of a
weekday presents several differences from the pattern of a
weekend day, both when we focus on the pattern of a person
and when we focus on the pattern of a house.

To learn the daily pattern of a person, ideally, we need to
discover what remains invariant, possibly adapting over time
to the new parameters. Our intuition is that a person will
spend approximately similar amounts of time in a place over
the course of a “normal” day and will produce proportionally
equal amounts of motion information. By modeling the daily
motion pattern of a person using a vector, with each field
of the vector indicating the relative mobility level at a given
place of the house during a given time window, we can use
the distance of the vectors as an indication of how different
two days are. We expect that the distance between “normal”
days will be relatively small in comparison to “deviating”
days. Thus, we can define as “deviating days” any vectors
who are outliers. In order to detect outliers a clustering
algorithm, such as k-means, can be used.

4.3 Extracting Activity Models

While the statistical representation of the raw sensing
data and its variation over time can provide valuable in-
formation about the monitored person, it fails to provide an
in-depth analysis about the person’s daily living habits. As
the person moves inside the house, a sequence of detected
sensing features is produced over time. These features might
encode spatial information, such as the rooms /areas the per-
son visits or the objects with which she interacts, as well as
temporal information, such as the exact time and duration
of these features. The sequence of these recorded sensing
features over the course of a day represent the monitored
person’s daily activity signature. Using this stream of sym-
bols, we formulate the problem of human activity modeling
as a spatiotemporal pattern-matching problem on top of the
sequence of recorded sensing features and solve it using an
exhaustive search algorithm [6].

The sensor network is modeled as a spatiotemporal feature
generator that is triggered by the monitored person as she
moves over space and time. Every day can be represented as
a sequence of spatiotemporal features. Given a large number
of such daily activity sequences, we formulate the problem of
finding the daily activity model of a person as the problem
of finding the most frequent sequences of sensing features,
namely location, time and duration [6]. In general, every
sequence of sensing features corresponds to one or more ac-
tivities. However, the most frequent sequences of features,
the ones that appear in a large number of daily signatures,
represent the daily living model of the person.

To automatically discover the sequence of sensing features
that frequently appear in a collection of daily signatures we
use an exhaustive search algorithm that is based on the a-
priori principle: any subsequence of a frequent sequence has
to also be frequent [6]. Given this, we have employed an
exhaustive, yet very efficient, search algorithm that auto-

matically discovers the most frequent sequences of sensing
features. Initially all the frequent sequences of size 1 are
discovered. Then, using the set of frequent sequences of
size 1 as our starting point we identify the most frequent
sequences of size 2 and the algorithm continues iteratively
until no frequent pattern is finally discovered.

At the end, the most frequent sequences of features of
different sizes have been identified. Since these sequences
represent the monitored person’s frequent activities, when
combined, they can be used to build the daily living model of
the monitored person. For instance, Figure 8 shows the daily
living activity model that was extracted out of 30 days of
recorded data of an elder person living alone in Deployment
A. In this case, the basic sensing features recorded were very
primitive activities such as sleeping, having breakfast etc.
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Figure 8: Simplified daily living model of the monitored
person of Deployment A.

4.4 Rule-Based Activity Inference

In addition to the automatically extracted activity mod-
els, our project has also developed a behavior interpretation
system with which users are able to describe activities as
a collection of probabilistic rules with spatial and tempo-
ral characteristics expressed in high level script form. Each
activity description has well-defined inputs and outputs en-
abling the creation of a library of activity components that
can be connected together into hierarchies to provide even
more complex interpretations. The power of such a frame-
work comes from the hierarchical organization of reasoning.
This allows the use of simple timestamped, localized sensor
measurements to reason about more macroscopic behaviors
taking place in space and time.

The main idea is that human behaviors are sequences of
very primitive actions that take place over space and time.
Different activities can be described by simply combining
these primitive actions over time in different ways. A mul-
timodal wireless sensor network monitoring a person’s loca-
tion and interaction with different objects over space and
time provides a stream of basic sensing features for identi-
fying these primitive human actions. The proposed method
suggests to parse the sequence of detected sensing features



into higher level human behaviors in a hierarchical bottom-
up processing model that is similar to natural language pro-
cessing. The set of recorded features becomes the human
activity alphabet. In the same sense that we combine letters
to form words, we combine these features to define primi-
tive actions; similarly, as words are combined to form sen-
tences, sequences of primitive actions are combined to de-
scribe basic human activities; and so on from sentences to
paragraphs, paragraphs to stories, we combine human ac-
tivities over space and time to define macroscale human be-
haviors.

The basic interpretation blocks in this hierarchy are Prob-
abilistic Context-Free Grammars (PCFGs) [7, 8] that can be
either specified by the user or even automatically extracted
from the collected data as shown in [6]. Through a simple
high-level interface, users provide a collection of probabilis-
tic rules that form a PCFG. This set of rules specifies one or
more activities by enforcing a syntax on the recorded input
stream of sensing features. This syntax takes into account
spatial characteristics (detected sensing features and their
sequences over time) as well as temporal characteristics. A
flexible time abstraction layer we have designed and imple-
mented [9], enables users to associate time information to
the recorded sensing features on a per-grammar and on a
per-feature basis allowing the definition of grammar specific
spatiotemporal features. By parsing these sequences of spa-
tiotemporal features, activity recognition at different levels
of spatial and temporal granularity is achieved.

The grammar hierarchy interpretation framework has al-
ready been used in several home network deployments to
automatically interpret the recorded stream of data and pro-
vide meaningful activity summaries [8, 9]. Its interpretation
power has also been demonstrated by the successful detec-
tion of complex activities, such as the cooking activity [8].

S. CONCLUSIONS & FUTURE WORK

This paper described our up-to-date progress on a scal-
able system for monitoring elder activities in assisted liv-
ing. Our problem consideration and deployment experiences
have shown encouraging signs that fine-grained monitoring
for providing services will be possible in the near future.
To achieve that one needs high precision sensors for localiz-
ing people, preferably without requiring them to wear sen-
sors. Furthermore, we have discovered that there is a lack of
synergy between learned and predefined models. Our work
up-to-date has demonstrated that the two model types are
complementary, and in order to deploy an effective system
the two models should work together in close coordination.
This and the development of intelligent motion discrimina-
tive sensors will become the focus of our future work.
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